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Introduction



Q1: Why Global Solution?

e Dynare and other local perturbation methods provide solution around the
deterministic steady state
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Q1: Why Global Solution?

e Dynare and other local perturbation methods provide solution around the
deterministic steady state
e Recent studies highlight the importance of nonlinearity in DSGE models:
- financial crises in closed or open economies
- implications of rare diasters (such as COVID-19)
- portfolio choices models with many financial assets
- occasionally binding constraints (borrowing constraints, ZLB etc.)
- international finance models with portfolio choices/capital accumulation

e Models calling for global solution:

1. models intrinsically not suited for local method

2. models with large shocks/high nonlinearity

3. equilibrium properties in different regions are significantly different
4. when precautionary behavior matters
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Q2: Why GDSGE?

e GDSGE (available at www.gdsge.com): Dynare-like toolbox for global
non-linear solutions of DSGE models

e Properties of GDSGE:

1. easy to use: One only needs to provide model specification in a simple way.

2. unified framework: Encompasses many well-known incomplete markets models
with highly nonlinear dynamics

3. high efficiency and accuracy: More efficient and accurate than the original
solution methods of many important papers.
Most of the examples on our website can be solved in one minute

4. great flexibility: many options of model specification for users/can be
incorporated into the whole program
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Q3: What do We Provide?

Interior-Point
Method

Knitro

Automatic
on

Splines

Adaptive Sparse
Grid

OpenMP

. GDSGE
.gmod file |— Parser mex

Random Number
Generators

MATLAB Printand Plot

Utilities

Debug

1. a unified framework that allow users to describe models in simple and intuitive
script files

2. efficient implementation that compiles these script files to C++ libraries
parallelization, equation solvers with automatic differentiation, and various
dense/sparse grid function approximation methods

3. an easy-to-use interface in MATLAB to run/debug/plot/print 474



e Properties and solutions of global DSGE. Coleman (1990); Duffie et al.
(1994); Magill and Quinzii (1994); Cao (2020) among others in the GE incomplete
markets literature
New: A policy iteration method that delivers both good theoretical properties
and robust numerical properties

e Computational Toolbox. Winschel and Kratzig (2010)... Many others by
providing modularized code
New: A unified framework to represent models in concise scripts. A parser to
convert model scripts. No requirements for specific programming languages
besides MATLAB

e Dealing with endogenous state variables with implicit laws of motion.
(e.g. wealth share) Kubler and Schmedders (03), Dumas and Lyasoff (12), Elenev
et al. (16)

New: Introducing consistency equations: enabling a robust algorithm
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Please download lecture material at http://www.gdsge.com/lectures.html

Getting Started - A Simple RBC Model

- Equilibrium concepts

- Structure of gmod. file and toolbox usage

- An extension with irreversible investment
General GDSGE framework
Bianchi (2011): Sudden Stops in Open Economies

- Observe nonlinearity!

- Initiate policy functions that involve solving non-trivial equations
- Deal with endogenous borrowing constraint
- Using adaptive-grid functional approximations

Kiyotaki and Moore (1997): Collateral Constraints with Investment
- Consistency equations for endogenous states with implicit laws of motion
- Generalized Impulse Response Functions

Some advice on developing models using GDSGE
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Getting Started: A Simple RBC
Model



Getting Started: A Simple RBC Model

o Preferences

e

o e —
EY By L=l
t=0
e Technology

Production: Y; = z. KL}~

Investment: K1 = (1 —0)K: + I
o Markets clear

¢+ Keyr1 = Ye + (1 - 5)Kt

. .. . 1-
e Shock: z; € {2z, zy}, with Markov transition matrix pr, , =( " e
1—myn THH
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Solution Concepts and Equilibrium Conditions

e Given Kjp, a sequential competitive equilibrium is stochastic sequences:
{ct, Ket1}32, such that

Euler equation: ¢; 7 = BE; [(aze11 K27 + (1 —0)) ¢
Budget: ¢; + Kip1 = zK + (1 — 0)K:.

e Notice that the equilibrium can be represented by the system of equations. In
particular, the Euler equation is necessary and sufficient for optimality.
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Solution Concepts and Equilibrium Conditions

e Given Kjp, a sequential competitive equilibrium is stochastic sequences:
{ct, Ket1}32, such that

Euler equation: ¢; 7 = BE; [(aze11 K27 + (1 —0)) ¢
Budget: ¢; + Kip1 = zK + (1 — 0)K:.

e Notice that the equilibrium can be represented by the system of equations. In
particular, the Euler equation is necessary and sufficient for optimality.

e The GDSGE toolbox is looking for a recursive equilibrium: functions
c(z,K), K'(z, K) such that

(2,K)™" = BE [(az'[w(z, K"+ (1= 8)) [e(2, K (2, K)] 7

],

(z,K)+ K'(z,K) = zK* + (1 - H)K.
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Solution Concepts and Local v.s Global Solutions

Policy functions for Next Period K
43

42+ .
41 ot et
40 PR

a9 b Steady state: K* .'..,-

o Dynare, Local Solutions:
a7k K'= K"+ (K — K*) +7:(2 = 2°)

36 R

351 e .

34 e

33 1 1 1 1
34 35 36 37 38 39 40 41 42
K

e Local solutions: approximated around the steady state; implemented by Dynare
e Global solutions: solved at each collocation point
- need to specify the domain of state variables: K € {Ki, Ko,..., Kn}, with
K=Ki<Ke<...<Ky=K.

e Local solutions approximate well for the current model
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Policy Iteration Methods, A Prelim

e We solve the recursive system via policy iterations described by
C(n)(z7 K) ™" = BE [(az/[K/(")(Z, K)]a—l +(1- 5)) [C(m 11(2/7 K/(n)(L K))]~° Z}

Nz, K)+ K'"(z,K) = zK* + (1 — 6)K

Start from some initial conjecture c(%) (more on initialization later)

At the n-th iteration, take function ¢("~ %)

as given, and solve a two-equation
system for unknowns (¢, K’) for each collocation point (z, K) to get updated
functions ¢(”) and K'(")

Iterate until ||c(") — c("~ || < Tol, for some predetermined Tol
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Toolbox Code - Structure of the gmod File

alpha delta;

Parameters

Exogenous States

EndogenousStates

®;

Policy Functions

var_policy ¢ K r

Lpha+ (1-delta) *K:
alpha+ (1-delta) *K;

Unknowns

+ 1-delta;

1 - beta*GDSGE_EXPECT(u prine_f
z*ktalpha + (I-delta)*k - ¢ - K

2+ (1-alpha) *K*alpha;

an
ond;

k_next'}/u_prime;

Models and
Equations

simulate;
num_pe

nun_samp]

initial
initi
var_s:
=
ond;

Simulations
(Optional)
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| prameres || Ot | H | | | |
States
1 % Parameters
2 parameters beta sigma alpha delta;
3 beta = 0.99; % discount factor
4 sigma = 2.0; % CRRA coefficient
5 alpha = 0.36; % capital share
6 delta = 0.025; % depreciation rate
7
8 % Exogenous States
9 var_shock z;
10 shock num = 2;
11 z low = 0.99; z high = 1.01;
12 Pr 11 = 0.9; Pr hh 0.9;
13 z = [z low,z high];
14 shock_trans = |
15 Pr 11, 1-Pr 11
16 1-Pr hh, Pr hh
17 17

e parameters: parameters needed to define the model
e var_shock: exogenous states (e.g., productivity z here)
- shock_num: number of discrete realizations

- shock_trans: the full transition matrix (e.g, Pr(z — z’) here)
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‘ ‘ Endogenous

States
% Endogenous States
var_state K;
Kss = (alpha/(l/beta - 1 + delta))”(1/(l-alpha));
KPts = 101;
KMin = Kss*0.9;
KMax = Kss*1.1;
K = linspace (KMin, KMax, KPts) ;

e var_state: endogenous states (e.g., capital K here)
- Need to specify a gird for each endogenous state
- For example, here the grid is specified to be a 101-point equal-spaced grid over
[0.9 x K*,1.1 x K*] where K™ is the steady state capita level
- Generally, need the range of the grid to cover the ergodic set (more on this Ifgt;e{)



Policy
Functions

o

s Interp

var_interp c interp;

initial c interp z.*K."alphat(l-delta) *K;
% Time iterations update

c_interp = c;

e var_interp: functions to be iterated over (c(z, K) here)
- Need to initialize each var_interp following keyword initial
- Here ¢(z, K) is initialized to be consuming all available resources
- Need to specify the update of each policy function after a time step. Here it is

updated to be unknown c solved out of the equation 14/74



% Endogenous variables as unknowns of equations
var_policy c K next;

inbound c 0 z.*K.”alpha+(l-delta) *K;
inbound K next 0 z.*K."alpha+(l-delta) *K;

‘ “ “ ‘ ‘ Unknowns

% Other endogenous variables
var aux w;

e var_policy: unknowns to be solved at each collocation point, ¢ and K’ here
- Need to specify the bounds of range over which solutions are searched for each
unknown following keyword inbound
e var_aux: variables that are simple functions of other variables and need to be
returned. Each var_aux needs to be defined in the model 15/74



Models
& Equations

model ;
Budget constraints

u_prime = c”(-sigma);
kret next' = z'*alpha*K next”(alpha-1) + l-delta;

s Evaluate the interpolation object to get future consumption
c_future' = c_interp' (K_next);
u_prime_future' = c_future'” (-sigma);

Calculate residual of the equation

euler residual = B
market_clear = z*K*alpha + (l-delta)*K - c - K_next;

; Calcualte other endogenous variables
w = z*(l-alpha)*K*alpha;

equations;
euler_residual;
market_clear;
end;
end;

1 - beta*GDSGE_EXPECT{u prime future'*kret next'}/u prime;

e The system of equations for each collocation point of exogenous and
endogenous states (z, K here) needs to be defined in the model; block
e The final system of equations is defined in the equations; block

e Any evaluation necessary for defining the equations is enclosed preceding the

equations; block
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Models
& Equations

model;
¢ Budget constraints
u prime = c”(-sigma); kret! ) =z(1) -a-K'* 1 +1-6
kret_next' = z'*alpha*K_next”(alpha-1) + l_delta‘krEH(Z)::z(2)~cr-K’“’14—14—5

s Evaluate the interpolation object to get future consumption
c_future' = c_interp' (K_next);
u_prime_future' = c_future'” (-sigma);

5 Calculate residual of the equation
euler residual = 1 - beta*GDSGE_EXPECT{u prime future'*kret next'}/u prime;

market_clear = z*K"alpha + (l-delta)*K - c - K_next;

5 Calcualte other endogenous variables
w = z*(l-alpha)*K*alpha;

equations;
euler residual;
market clear;
end;

end;

Can use parameters, var_shock, var_state and var_policy in the model block

A variable followed by a prime (') defines a vector of length shock_num

A var_shock (z here) followed by a prime (') refers to this var_shock across

realizations, which is of length shock_num
The line defines capital return given choice K’ across realizations of z
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Models
& Equations

model;
;. Budget constraints

u_prime = c”(-sigma);

kret next' = z'*alpha*K next”(alpha-1) + l-delta;
5, Evaluate the interpolation object to get future consumption
= ; T - |
c_fu‘.cure c_interp' (K_next); i C’(l) _ C(”"’(z(l),k")
u prime future' = c future'™  (-sigma); , (n—1) ,
- - - ¢'(2) =" 7(2(2),K")

Calculate residual of the equation
1 - beta*GDSGE_EXPECT{u prime future'*kret next'}/u prime;

euler_residual = B
market_clear = z*K*alpha + (l-delta)*K - c - K_next;

; Calcualte other endogenous variables
w = z*(l-alpha)*K*alpha;

equations;
euler_residual;
market_clear;
end;
end;

e A var_interp defined before (c_interp here) can be used as a function to
evaluate policy functions referred by this var_interp from the last iteration

e A var_interp when called followed by a prime (') returns the evaluation across

realizations of exogenous states ...
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Models
& Equations

model ;
 Budget constraints
u_prime = c”(-sigma);
kret next' = z'*alpha*K next”(alpha-1) + l-delta;

3 Evaluate the interpolation object to get future consumption
c_future' = c_interp' (K_next);
u_prime_future' = c_future'” (-sigma);

% Calculate residual of the equation
euler residual = 1 - beta*GDSGE_EXPECT{u prime future'*kret next'}/u prime;
ki T = z*K"alpha + (I- . N — . .
market_clear z aipha (I-de Yirmqpkret’ ()c'(i")"Pr(i = i")
EulerResid =1—f : —
c

s Calcualte other endogenous var
w = z*(l-alpha)*K"~alpha;

equations;
euler_residual;
market_clear;
end;
end;

e GDSGE_EXPECT is a built-in function that calculates the expectation of the
expression conditional on the current realization of exogenous states
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Models
& Equations

model;
 Budget constraints
u_prime = c”(-sigma);
kret next' = z'*alpha*K next”(alpha-1) + l-delta;

. Evaluate the interpolation object to get future consumption
c_future' = c_interp' (K_next);
u_prime_future' = c_future'” (-sigma);

Calculate residual of the equation
euler residual = 1 - beta*GDSGE_EXPECT{u prime future'*kret next'}/u prime;

market_clear = z*K"alpha + (1-delta)*K - ¢ - K_next;

. Calcualte other endogenous variables
w = z*(l-alpha)*K*alpha; w=2z(1—a)K*

equations;
euler_residual;
market_clear;
end;
end;

e Any var_aux (w here) needs to be evaluated in the model block so as to be

returned
e Notice: Expressions in the model; block are executed sequentially. Do not use

a variable before it's defined.
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H H H ‘ ‘ Simulations

simulate;
num _periods = 10000;
num_samples = 100;
initial K Kss;
initial shock 1;
var_simu c K w;
K' = K next;

end;

The simulate; block specifies Monte-Carlo simulations

Need to initiate all endogenous states (K here) following keyword initial, and
the index of exogenous states following keyword initial shock

Need to specify the transition of endogenous states (K' = K_next here)
var_simu are variables recorded; var_simu must be in var_policy or var_awx /74



Parse the gmod File

e Upload the gmod file to an online compiler listed on www.gdsge.com
- Also download the runtime libraries at the compiler website and add to path
- Local compiler coming soon
- Recompilation needed only if changing models (but not parameters or options)
GDSGE: A Toolbox for Solving Global DSGE Models

1. Install Visual C++ 2015 Runtime [HERE]

2. Download, unzip, and add to matlab path [gdsge_win.zip]

3. Upload .gmod file below and wait to download compiled files

Choose File |rbe.gmod Upload

Citation: Cao, Dan, Wenlan Luo, and Guangyu Nie (2020). Global DSGE Models. Working Paper.

# Visits: 0028217

e The online compiler returns a zip file (rbc.zip in this case), which contains

- iter_modname.m and simulate_modname.m that can be called in MATLAB
- mex_-modename: dynamic libraries that will be called to do the actual

computations
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Solve Models on Local Computers: Policy lterations

e In MATLAB run iter_rbc.m and assign results in variable IterRslt

>> |terRslt = iter_rbc;
Iter:10, Metric:0.385606, maxF:9.9913e-09
Elapsed time is 0.057094 seconds.

Iter:323, Metric:9.8918e-07, maxF:7.96884e-09
Elapsed time is 0.032591 seconds.

e In the printed information:

- lter: number of iterations

- Metric: ||c™ — "= Y|| where || - || is the sup norm (max abs across states)
- maxF: the max of absolute residual across all equations and all states

- Elapsed time: time elapsed from the last print
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The returned IterRslt contains model structure, converged policy functions
iterated on (i.e., var_interp), and var_policy and var_aux. For example,

>> IterRslt

IterRslt =

struct with fields:

Metric:
Iter:
shock_num:
shock_trans:
parans:
var_shock:
var_state:
var_policy:
var_interp:
var_aux:

pp:
GNDSGE_PROB:
var_others:

and

9.8918e-07
323

2

[2x2 double]
[1x1 struct]
[1x1 struct]
[1x1 struct]
[1x1 struct]
[1x1 struct]
[1x1 struct]
[1x1 struct]
[1x1 struct]
[1x1 struct]

>» IterRslt.var_policy

ans =

struct with fields:

c: [2x101 double]
K _next: [2x101 double]
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e We can plot the converged policy functions or state transition functions
>> figure;
plot(lterRslt.var_state.K, IterRslt.var_policy.K_next);
xlabel('K’); title(Policy Functions for Next Period K’);

which produces

Policy Functions for Next Period K

41

40 -

39

38

37

36

34 35 36 37 38 39 40 41 42
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Simulations using the Converged Policy Iterations

e The converged policy and transition functions can be passed to simulate_rbc.m

for Monte-Carlo simulations, by calling
>> SimuRslt = simulate_rbc(IterRslt);
Periods: 1000
shock K c w
2 3789 2755 2392
Elapsed time is 0.818482 seconds.

Periods: 10000
shock K c w
2 38.45 2.774 2.405
Elapsed time is 0.795403 seconds.

o The results (stored in SimuRslt) contain the panels of shock index and
var_simu defined in the simulate block.

>> 3imuRs1lt
simuRslt =
struct with fields:
shock: [100x10001 double]
K: [100x10001 doublel

c: [100x10000 double]
w: [100x10000 double] 26/74



e We can inspect the ergodic distribution of the endogenous state K
>> histogram(SimuRslt.K); title('Histogram for K’);

which produces

Histogram for K
18000 T T

16000

14000

12000

10000

8000

6000

4000

2000
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e We can inspect the simulated panels of var_simu, for example
>> plot(SimuRslt.w(1:2,1:100)"); title('Sample Paths of Wages');

Sample Paths of Wages
242 T T

241} ——h
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4 ‘%\J RN

|
g\\J ~ ~

2.3

o

2.3

oo

23

\‘

>

236

2.3

.

m

234

233

which produces the first two paths of wage for the first 100 periods
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Resolving Models with Different Parameters

e The compiled code can be reused to solve models with different parameters
For example, solve the model by increasing the size of the shock

>> options.z = [0.95,1.05]; % previously [0.99,1.01]
IterRslt = iter_rbc(options);

e Policy functions now show more visible difference across realizations of shocks

» Policy Functions for Next Period K

41

40

39

38

37r

36 -
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34 35 36 37 38 39 40 41 42
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Resolving Models

e A useful feature is to solve models with new parameters starting from
previously converged solutions, by passing converged solutions in \WarmUp

>> options.z = [0.95,1.05]; % previously [0.99,1.01]
options.WarmUp = lterRslt;
IterRslt = iter_rbc(options);

which starts from converged solutions and converge in fewer iterations
Iter:330, Metric:0.000783625, maxF:9.89807e-09
Elapsed time is 0.051842 seconds.

Iter:457, Metric:9.90468e-07, maxF:7.93061e-09
Elapsed time is 0.050782 seconds.

e This can also be used to overwrite options, for example
>> options.PrintFreq = 100;
options.SaveFreq = 100;

sets the print frequency and save frequency to 100 (the default was 10)
See the toolbox website for more options

e This can be used to overwrite the range of var_state to refine solutions. More

on this later 30/74



Extending the RBC model with Irreversible Investment

e The RBC model can exhibit nonlinearity and state-dependence with simple
extensions
e Assume the investment is partially irreversible:

l: > ol
e The optimality conditions now read

¢ 7 — e, T = PE; [(aZtHKfjr_ll +(1- 5)) ct_ﬁ —(1 rS)//t,lcfﬁ]
pecy 7 [Kt+1 —(1-9)K: — ¢/ss] =0,

in which pyc; 7 is the multiplier on the investment irreversible constraint.
g

(Here we use pu¢c; 7 instead of p; alone to restrict its value in a box [0,1]).
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Extending the RBC model with Irreversible Investment

e The RBC model can exhibit nonlinearity and state-dependence with simple
extensions
e Assume the investment is partially irreversible:

l: > ol
e The optimality conditions now read

Ct_a HeCy 7 = ﬁEt [(aZt+1K;1+_11 + (1 — (5)) C;'?i — (1 ()‘)//tflctj:i]
HeCy [Kt+1 (1-0)K: — ¢/ss] =0,

g

in which p:c; 7 is the multiplier on the investment irreversible constraint.

“ instead of p alone to restrict its value in a box [0,1]).

(Here we use ¢,
e We set the values in inbound for the two inequalities with Kuhn-Tucker
condition:

pe > 0; Kepr > (1 —0)K: + ¢lss. 31/74



‘ H H H POII.CV | Unknowns
Functions

Models
& Equations

[var_interp c_interp mu_inter]

initial c_interp z.K- aLprat(L geTta)~

o~ (- Slgma)
z*

e
kret_next'

a*K_next~(alpha-1) + 1-delta;
' (K_next);
[ru_future' = mu_interp' (K next);
U_prime_future’ = c_future - (-sigma);

c_future'

- beta*GDSGE_EXPECT(u _prime future'*
market_clear = z'K-alpha + (1-delta) K - C - K_next;

(kret_next'-(l-delta) *m

u_future') }/(u_prime* (1-mu)) |

pha) *K*alph
t - (l-delta

Include p(z, K) as var_interp and use it to interpolate for ;41
e Include p; as var_policy.

Modify the Euler equation and add the comp. slackness condition to system
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Policy Functions with Irreversible Investment

1 Policy F i for
0.98 _—
— z =2z
0.96 1
// z=zy
s
0.94f e
/
0.92 . . n . . .
15 20 25 30 35 40 45 50
K
0.08 PO|I?y F ] for I of I t IrreverslPlIlty
Z =2z
0.06 2=zg q
0.04
0.02 _
‘ ‘ s T
15 20 25 30 35 40 45 50
K

e As shown, the investment irreversibility starts to bind (with multiplier i > 0),
when z; is low or capital K; is low.
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Occasionally Binding Irreversible Co

Histogram of Investment

0.6

05F m
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03

Fractions

0.2
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L L 1 L L L
0.93 0.94 0.95 0.96 0.97 0.98

e As shown, the irreversible constraint binds when the realization of z is z;
e Since z is a two-point process, this binding pattern seems a bit extreme
o See toolbox website on how to introduce a continuous z process (e.g., AR(1)),

which generates richer binding patterns at the ergodic distribution
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The GDSGE Framework




The GDSGE Framework, Summary

With the RBC example, we are now ready to discuss the general framework.

Many models fit in the framework and can be transformed into gmod files

e The framework also facilitates a comparison between global v.s local solutions

Will refer back to the RBC example to discuss abstract concepts
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Models with Short-run Equilibrium Conditions as Equations

o GDSGE is able to solve models with short-run equilibrium conditions
represented by system of equations:

F(S7X72’ {sl(z/)vxl(zl)}z’ez) = 0 (1)

where
- z € Z C R%: a vector of exogenous shocks (productivity z in the RBC example)
- 5 €8 CR*%: a vector of endogenous states variables (capital K)
- x € X C R%: a vector of endogenous policy variables (¢ and K’)
- §'(Z"),x'(Z'): future states and policies that depend on the realizations of future
shocks, (K’ (Z') = K',Vz’; ¢’ (Z') in expectation operator);
can accommodate more general dependence than expectation

e RBC example: 2 unknowns with 2 equations: Euler equation and budget
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Models with Short-run Equ um Conditions as Equations

o GDSGE is able to solve models with short-run equilibrium conditions
represented by system of equations:

F(S7X72’ {sl(z/)vxl(zl)}z’ez) = 0 (1)

where
- z € Z C R%: a vector of exogenous shocks (productivity z in the RBC example)
- 5 €8 CR*%: a vector of endogenous states variables (capital K)
- x € X C R%: a vector of endogenous policy variables (¢ and K’)
- §'(Z"),x'(Z'): future states and policies that depend on the realizations of future
shocks, (K’ (Z') = K',Vz’; ¢’ (Z') in expectation operator);
can accommodate more general dependence than expectation

e RBC example: 2 unknowns with 2 equations: Euler equation and budget

e Therefore, the toolbox (so far) cannot solve
- Decision problems that are non-concave or involve discrete choices, whose
optimality condition cannot be represented by equations.

- We are working on transforming discrete-choice into continuous-choice 36/74



Accommodate Inequality Constraints

e Models with inequality constraints

F (vaa Z, {S/(z/)vxl(zl)}z GZ) =0

G (s,x,2,{s'(z), X ()} ,ez) =0

Y%

can be transformed to the general formulation (1), by writing

A F
F= (G - 77) (2)

with 77 > 0 being an additional policy variable and expand &% = (x,7)
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Accommodate Inequality Constraints

e Models with inequality constraints

F (vaa Z, {S/(z/)vxl(zl)}z GZ) =0

G (s,x,2,{s'(z), X ()} ,ez) =0

Y%

can be transformed to the general formulation (1), by writing

A F
F= (G - 77) (2)

with 77 > 0 being an additional policy variable and expand &% = (x,7)

e In the investment irreversible example, we add a multiplier i > 0 into the Euler
equation and the complementary slackness condition as an additional equation

e This is how we handle occasionally binding constraints with equation solvers
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Solution Concepts and the Policy Iteration Algorithm

F(S’X7Z> {SI(Z/)7X/(Z/)}Z/€Z) =0 (1)

o A recursive equilibrium is a solution to (1) of the form
x =P(z,5)

and
s'(Z)=T(z,7,s)

where P and 7 are equilibrium policy and transition functions, respectively.
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e The algorithm starts with an initial guess for policy and transition functions

{POL,TO )}

Given P and 7(", P(+1) and T("*+1) are determined by solving the following
system of equations:

11 (n) (1 (5 _
F <s,x7z, {s (2", P\ (Z,s'(z ))}z'ez> 0.
with unknowns x and {s(z’)},, .z for each
(s,z)eC™ c zx8S.

e Mapping to the toolbox:
- z: var_shock (z). s: var_state (K). x: var_policy, var_aux (c, w, K')
- s'(Z): K
- P var_interp (c_interp)
- PO initial, ¢© (z,K) = zK* + (1 - 6) K

- F: Euler equation residual and the market clearing condition
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Bianchi (2011): Sudden Stops in
Open Economies




Bianchi (2011), Summary

e A model in which the borrowing constraint depends on a (commodity) price

e A negative shock that lowers the non-tradable good price tightens the
borrowing constraint, induces deleveraging and reduction of tradable
consumption, and further lowers the non-tradable price, amplifying the effects

e Can generate current account reversals resembling crises in emerging markets

e The model is highly nonlinear when the borrowing constraint binds. The
borrowing constraint binds occasionally, necessitating a global solution
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Bianchi (2011), Summary

e A model in which the borrowing constraint depends on a (commodity) price

A negative shock that lowers the non-tradable good price tightens the
borrowing constraint, induces deleveraging and reduction of tradable
consumption, and further lowers the non-tradable price, amplifying the effects

e Can generate current account reversals resembling crises in emerging markets

The model is highly nonlinear when the borrowing constraint binds. The
borrowing constraint binds occasionally, necessitating a global solution

Use the model to illustrate how to
- introduce endogenous borrowing constraints
- initiate the policy function P©)(z,s) with model_init block
- refine solutions over expanded and refined grids
- use adaptive grids to obtain accurate solutions efficiently
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The Model

o Preferences:

© o
E[;ﬁtlt— O’:|’

with the composite consumption
Ct = A (CtT, Ct{v) = [w(CtT)_TI + (1 _ w)(cl{v)_n 7%7

where 7 > —1 determines the elasticity of substitution between tradable
consumption ¢, and non-tradable ¢/V. w € (0,1) is the weight on tradables

e Endowments: (y,,y{Y) follows an exogenous AR(1) process

e Incomplete-markets: saving/borrowing can only be via a state non-contingent
bond b;y1 at a world (exogenous) interest rate r
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e Budget constraint:
bepi+ ¢ +plel =b(1+r)+y +plyl.

e Borrowing constraint:

biy1 > *(HNP?[}GN + HTYrT)-

where kN, kT > 0 are parameters governing the collaterability of non-tradable

and tradable endowments

42/74



Equilibrium Conditions

e Optimality:

1-— ¢l \n+l
pN = ( w) (i) , (Tradable v.s Non-tradable)

w cN

At = B(1+ r)E¢Aei1 + pie,  (Bond Euler Equation)

fie | bes1 + (kNpNyN + KTy, )] =0, (Comp. Slack. for Borrowing Constraint)

where

)\t:Ct (acz,Ct).
t

e Market clearing conditions:
' =y,
CtT = _ytT -+ bt(]- + r) — bt+1'
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Mapping to GDSGE Framework and the Toolbox

e Exogenous states, var_shock: z = (yN,y,)

e Endogenous states, var_state: s = b;

e Policy variables (unknowns), var_policy: x = (¢, ¢/, cN, bii1, pl)
e Policy functions iterated over, var_interp: \(z, b)
e Equations F at n-th iteration:

= (5 (%)

Ae =B+ NEN" (2, bet)|z] + pe,
peberr + (" ply + £Ty)] =0,

' =y,

CtT = ytT + bt(]- + r) - bt+1'

e Update A7) = \;: need to include A; as a var_aux. 44/74



Bianchi (2011) in 100 Lines of GDSGE Code

ga beta;

59 var policy -
6 inbound nbext
61 inbound mu 0

& inbound
& inbound

var_output bliext pN;

68 model;

19 var shock yT yN;
0 yeta = &
21 shock nume16;

7 simulate
9  num_periods = 1000;
9 num samples = 100
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Exogenous Endogenous Policy Models
. Unknowns X
States States Functions & Equations
var_state b;
var_shock yT yN;
var_interp lambda interp;
var_policy nbNext mu cT pN;
model;
Non tradable mark r

cN = yN;

bNext = nbNext - (kappaN*pN*yN + kappaT*yT);

1m>nndd[‘ufur‘e-' = i(;ynbduimferm' (bNext) ;

c = (omega*cT”(-eta) + (l-omega)*cN”(-eta))”(-1/eta);

partial_c_partial_cT = (omega*cT”(-eta) + (l-omega)*cN~(-eta))”(-1/eta-1) * omega * cT*(-eta-1);
lambda = c*(-sigma)*partial_c_partial cT;
euler_residual = 1 - beta*(I+r) * GDSGE_EXPECT{lambdaFuture'}/lambda - mu

rice sisten
price_consistency = pN - ((l-omega)/omega)* (CT/cN)~ (eta+l);

budg strain
budget_residual = b* (1+r) +yT+pN*yN - (bNext+cT+pN*cN)

equations;
euler_residual;
mu*nbNext ;
price_consistency;
budget_residual;
end;
end;

e The system of equations can be further simplified, by e.g., directly imposing

from the market clearing of non-tradable goods 46/74



Exogenous
States

‘ ‘ Endogenous
States

‘ Policy

Models
. Unknowns
Functions

& Equations

var_state b;
var_shock yT yN;
var_interp lambda_interp;

var_policy| nblNext |mu cT pN;

[inbound nbNext 0.0 10.0;

model;

ransform ve
[bNext = nbNext -

(kappaN*pN*yN + kappaT*yT); |

te Euler residu
partial_c_partial_cT = (ome
lambda = c”(-sigma) *partial
rice ten
price_consistency = pN - ((1
budget o
budget_res.
equations;
uler_residual;

budget_residual;
end;
end;

r
euler_residual = 1 - beta*(I+r) *

lambdaFuture' = lambda_interp' (bNext);

c = (omega*cT”(-eta) + (l-omega)*cN”(-eta))”(-1/eta);

~(-eta) + (l-omega)*cN”(-eta))”(-1/eta-1) * omega * cT”(-eta-1);

GDSGE_EXPECT{ lambdaFuture'}/lambda - mu;

-omega) /omega) * (cT/cN) ~ (eta+1) ;

straint
idual = b* (1+r) +yT+pN*yN - (bNext+cT+pN*cN) ;

and include nb¢; instead of b;y; as unknown. Ib of nb,; is fixed at 0.
e example of dealing with inequality constraint in GDSGE in equation (2)

by = bey + 5VplyY + 5Ty >0,

Trick 1: transform the borrowing constraint by 1 > —(kVpNyN + kTy,T) into
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Exogenous Endogenous Policy Models
. Unknowns X
States States Functions & Equations

var_state b;
var_shock yT yN;
var_interp lambda interp;
var_policy nbNext|[mu |cT pN;
inbound mu 0.0 1.0;
model;

cN = yN;

bNext nrNext - 1kapp N*pN*yN + kappaT*yT) ;

11m xdd[‘u.ur@ = de interp' (bNext) ;

c = (omega*cT”(-eta) + (l-omega)*cN”(-eta))”(-1/eta);

partial artial_cT = (omega*cT”(-eta) + (l-omega)*cN”(-eta))”(-1/eta-1) * omega * cT"(-eta-1);

lambda = c”(-sigma)*partial c partial cT;

1 - beta*(l+r) * GDSGE_EXPECT{lambdaFuture'}/lambda - mu;

euler_residual =

rice sisten

price_consistency = pN - ((1-omega)/omega)* (cT/cN)* (eta+l);
budget str
budget_residual - b"(1+r)4yT>pN“yN - (bNext+cT+pN*cN) ;
equations;
euler_residual;
mu*nbNext ;

budgar residual;
end;
end;

e Trick 2: transform the Euler equation into

1 :ﬂ(l"‘ )Et

e The normalized multiplier ji; = £¢

Aty1 Ht

N N

thus lies in [0, 1].

e The resulting Euler equation is also normalized to be in [0, 1].
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Initiate Policy Functions with

Policy
Functions
Define the last-period problem
var_policy_init dummy;
inbound_init dummy -1.0 1.0;
var_aux_init c[lambdal;
model_init;
cT = yT + b*(1l+r);
cN = yN;
c = (omega*cT”(-eta) + (l-omega)*cN”(-eta))”(-1/eta);
partial c_partial cT = (omega*cT”(-eta) + (l-omega)*cN”(-eta))”"(-1/eta-1) * omega * cT"(-eta-1);

lambda = c”(-sigma)*partial_c_partial cT;

equations;
0;
end;
end;
var_interp lambda_interp;
initial lambda interp lambda;
lambda_interp = lambda;

Crucial to initialize the var_interp properly for the algorithm to work
Initializing with a last-period problem in finite-horizon economies usually works
Define a potential different system of equation in model_init

Define var_policy_init for unknowns and var_aux_init for extra returns

var_aux_init and var_aux_init can be used following keyword initial
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Inspecting the Policy Functions

e Upload the gmod file. Run iter_bianchi2011 in MATLAB. Plot policy functions

Policy Functions for Next Period Bond Holding, b

0 -
05
ab — )
-1.2 -1 -0.8 -0.6 -0.4 -0.2 0
Current Bond Holding, b
Policy Functions for Non-tradable Good Price, pV
4
3t
oL
1k T Lowest, ' Lowest
) —=—uyi Highest, yi¥ Lowest
o ‘ . ‘ ; ‘
-1.2 -1 -0.8 -0.6 -0.4 -0.2 0

Current Bond Holding, b

e As shown, the policy functions are highly nonlinear, and the nonlinearity is
state-dependent 50/74



the Ergodic Distribution

e Pass the converged

policy iteration results into simulate_bianchi2011 to run

simulations, and inspect the ergodic distribution of bond holdings

0.14

0.12

0.1

0.08

Fractions

0.06
0.04

0.02

e As shown, the nonl
with positive proba

Histogram and Kernel Density of Bond Holding

-1 -095 -09 -085 -08 -075 -07 -065 -06 -055
Bond Holding, b

inearity region is in the model's ergodic set (i.e., appearing
bility), but is occasionally appearing 51/74



Using the Adaptive Grid Interpolation Method

e Observation: the model nonlinearity is state-dependent, i.e., linear functions
approximate well for some regions but not for other
Question: is there a more efficient way to specify grid points?

e Answer: Adaptive Grid (Ma and Zabaras, 09; Brumm and Scheidegger, 17)

e Without going into technical details, in the toolbox this can be done by adding
USE_ASG=1; USE_SPLINE=0;

in the gmod file (recompilation needed)

e See the Bianchi2011 example on the toolbox website for how to inspect policy
functions with adaptive grids
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Policy Functions with the Adaptive Grid Method

Policy Functions for Next Period Bond Holding, b

Q‘Q
051
-1t L L
-1.2 -1 -0.8 -06 -0.4 -0.2 0
Current Bond Holding, b
Policy Functions for Non-tradable Good Price, p"v
o9
L o0 o——C"
3 P el
oL
1k —o—yl Lowest, 3 Lowest
—<—y! Highest, ¥ Lowest
o ‘ ; : ‘ ‘
-1.2 -1 -0.8 -06 -0.4 -0.2 0

Current Bond Holding, b

e As shown, now the toolbox automatically puts more grid points in regions with
higher nonlinearity

e Importantly, the grid can be different across realizations of exogenous shocks
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Further Discussions

In the Bianchi (2011) example on the toolbox website, we also guide you to

e solve the planner’s problem that accounts for the effects of prices on the
borrowing constraint

e interpolate policy and state transition functions for fast simulations
Other comments

e The adaptive grid method is designed based on sparse grid and is especially
powerful in dealing with models with high dimensions

- Cao, Evans and Luo (2020): a two-country IF model with incomplete markets,
portfolio choice and occasionally binding constraints, up to 6 endogenous states

e We next turn to a two-agent model with two endogenous states (capital and
bond) and occasionally binding collateral constraints
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Kiyotaki & Moore (1997) with
Risk-averse Agents




KM1997, Summary

e The interaction between capital price and output through the endogenous
collateral constraint produces amplified and persistent effects of shocks to the
economy.

e The original model is relatively simple with risk-neutral agents and
unanticipated MIT shocks.

e As a contributed example, the model is augmented with risk-averse agents and
recurrent aggregate shocks.
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KM1997, Summary

e The interaction between capital price and output through the endogenous
collateral constraint produces amplified and persistent effects of shocks to the
economy.

e The original model is relatively simple with risk-neutral agents and
unanticipated MIT shocks.

e As a contributed example, the model is augmented with risk-averse agents and
recurrent aggregate shocks.

e Use the model to illustrate how to:

- solve model with two endogenous states with occasionally binding constraints
- deal with endogenous state variable with implicit law of motion - consistency
equation

- generate Impulse Response Function with recurrent aggregate shocks
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The Model

e Two sectors: Farmers and Gatherers. Both produce using capital as input.

e A farmer maximizes
[ea

1
E t
Z B 1 —o’
subject to the budget constraint:

biy
Xe + Qekey1 + —(5—

Rt = ¥t + qik: + by,

where production y; = A¢ (a + ¢) k¢. She is also subject to:

X¢ > CAcke,
bii1 469, kv 20,

in which 4 € [0, 1], and 9, is the lowest possible capital price in the next
period.

56/74



The Model

e Similarly, a gatherer maximizes

l1-0o

ey (o G

subject to the budget constraint,

/

b
x; + th;+1 + %tl = yi + qek{ + by,

in which her production function is concave, y; = A, (k})“. Assume A, = §A;
with § < 1, and 3’ > .
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e Optimality:

(Xt)7cr — )\t + Nt = 07 (FOC of Xt)
Ne (xe — Accke) =0, (Slackness of x)
_qt)\t + 9 Mt + ﬁEt { } = 07 (FOC Of kt)

1
— =Xt + pe + BE {1} =0, (FOC of bt)
t

1 [9 ket + bt+1] =0,

(Slackness of CC)
(Xt')_<7 —A;=0, (FOCof x;)
(
(

ge = BB { (91 + o (ki) ") AL/
1= B'RE{ )\, /\}

FOC of k!)
FOC of b})

with auxiliary variable =(qe+1 + a+ €) A1 — cne41 to simplify notation.
e Market clearing conditions:

bey1 + bey1 =0,
kevr + ki1 = K,
Xt +xt = Ye =yt + y;. 58,74



Wealth Share as Endogenous State

e Define the farmers’ and gatherers' wealth shares as

Grk: + by

W = ——=—=,
q:K

Wy = Lkéib;.
q:K

In equilibrium, the market clearing conditions imply w; + w, = 1. Thus we only
need to keep track of w;.

e We use {k,w} as endogenous states, instead of {k, b}.
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Wealth Share as Endogenous State

e Define the farmers’ and gatherers' wealth shares as

Grk: + by

W = ——=—=,
q:K

Wy = Lkéib;.
q:K

In equilibrium, the market clearing conditions imply w; + w, = 1. Thus we only
need to keep track of w;.

e We use {k,w} as endogenous states, instead of {k, b}.

e In general, using w; has 3 advantages:

1. avoid multiple equilibria issues (as in the current model)
2. easy to determine the feasible set of state (w = 1 — ¢)
3. reduce dimensionality in models with many assets
(Heaton and Lucas, 96; Kubler and Schmedders, 03; Cao and Nie, 17)

50/74



Mapping to GDSGE and Consistency Equation

e Exogenous state, var_shock: z = A;

e Endogenous states, var_state: s = (k¢,w;)

e Policy variables (unknowns), var_policy: x = (x¢, x{, ke+1, bry1, Re, Gey ey por)
e Future policy functions, var_interp:

(Ae+1, Neys Gerts Eet) = PO (Apn, Keg1, wesn)
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Mapping to GDSGE and Consistency Equation

Exogenous state, var_shock: z = A,

Endogenous states, var_state: s = (k¢, wy)

Policy variables (unknowns), var_policy: x = (x¢, X{, ke+1, be+1, Ry Qe M, fit)

Future policy functions, var_interp:
(Ae+1, Neys Gerts Eet) = PO (Apn, Keg1, wesn)
e Wait! Do we know endogenous state weq1?

_ Ges1 (Ze1, Ket, wen) ke + byt
Wi+l (Zt, St, Zt+1) = — .
qit+1 (Zt+1, ki1, wt+1) K
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Mapping to GDSGE and Consistency Equation

e Exogenous state, var_shock: z = A;
e Endogenous states, var_state: s = (k¢,w;)
e Policy variables (unknowns), var_policy: x = (x¢, x{, ke+1, bry1, Re, Gey ey por)

e Future policy functions, var_interp:
(Ae+1, Neys Gerts Eet) = PO (Apn, Keg1, wesn)

e Wait! Do we know endogenous state weq1?
_ Qeq1 (ze+1, ke1, weg1) kerr + besa

Wt+1 (Zr St Zt+1) = —
Y qit+1 (Zt+1, kt+1,wt+1) K

e Solution: we include {w;1 (z:+1)} as unknowns, and the consistency
equation above in equations;.

. o |
o Revised var_policy: x = (x;, X}, ket 1, bes1, Res Ges es s {01 (2201 )

e Need to include (A, A}, &) into var_aux
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KM in GDSGE Code
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Policy
Functions

Endogenous

Exogenous
States

States

’ Models
& Equations

‘ ‘ Unknowns

18 var state kF omega;
30 var_shock A;
95; var_interp loglambdaF_interp loglambdaG_interp logauxF_interp g_interp;

106 var_policy nxF xG eta kFnext R g nbFnext muF [omega_next [3];

120 model;

121 kG = Kbar-kF; % market clearing for capital state
122 ¥ = Ax(atc)*kF + alowerxAxkG"alpha; % aggregate output

123

124 [oF = gromega*Kbar - g+kF;

125

~GDSGE_INTERP_VEC' (kFnext ,[omega_next’]) ;

126 [loglambdaF_next’, loglambdaG_next’, logauxF_next’,
127 lambdaF_next’ = exp(loglambdaF_next’);
128  lambdaG_next’ = exp(loglambdaG_next’);

129 auxF_next’ = exp(logauxF_next’);

130 kGnext = Kbar-kFnext; % market clearing for capital policy

131 gbar = GDSGEMIN{g next’};

132 bFnext = nbFnext - thetaxgbarxkFnext; % Transformaion

154 ‘consis_omega_next’ = (g_next’xkFnext + bFnext) - g_next’xomega_next’«Kbar;

156  equations;

166  end;
167 end;

Notice we set {w¢t1 (2e41)} as unknown, and derive
~ _ Ge+1(Zev1) kep1+besa
w z = — Vziyi1.
t+1 ( t+1) thr1(21:+1)K t+1 N
Consistency equation requires Wit (Ze41) = @er1 (Ze41) VZet1.

We can derive current debt level by by = q; (w:K — k¢)
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H ” ” Policy H H Models ‘
Functions & Equations

18
30
95
106
120
121
122
123
124
125
126
127
128
129
130
131
132
154
156
165
166
167

var state kF omega;

var_shock &;

var_interp loglambdaF_interp loglambdaG_interp logauxF_interp g_interp;
var_policy nxF xG eta kFnext R g nbFnext muF omega_next[3];

model ;
kG = Kbar-kF; % market clearing for capital state
Y = Ax(at+c)xkF + alowerxAxkG*alpha; % aggregate output

bF = gromegaxKbar - qxkF;

[loglambdaF_next’, loglambdaG_next’, logauxF_next’, g _next’]=GDSGE_INTERP_VEC' (kFnext, omega_next’);
lambdaF_next’ = exp(loglambdaF_next’);
lambdaG_next’ = exp(loglambdaG_next’);

auxF_next’ = exp(logauxF_next’);

kGnext = Kbar-kFnext; % market clearing for capital policy
[apar - GDSGEMIN{g_next’ ;|
bFnext = nbFnext - thetaxgbarxkFnext; % Transformaion

[consis_omega_next! = (q_next’«kFnext + bFnext) - q next’xomega_next’«Kbar;

equations;
consis_omega_next’;
end;

end;

e Trick 1: Use log of {Ary1,Af 1, &es1} for interpolation to reduce nonlinearity.

o GDSGHNTERP_VEC evaluates future variables in var_interp once for all.

e As mentioned, GDSGE can accommodate more general dependence on future

policy than expectation.
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Models
& Equations

H H Unknowns H

106 var_policy [nxE[ xG eta kFnext R q|[nbEnext| muF omega_next (3];

107 inbound nxF 0 2
108 inbound xG 0 2;
109 inbound eta 0 1;
110 inbound kFnext 0 Kba
111 inbound ®r 0

112 inbound g 0 10

25

1.5 adaptive(1.5);
adaptive (1.5);

113 [inbound nbFnext 0 10

adaptive (1.5) ;]

114 inbound mur 0 1;
115  inbound omega_next 0 1;
120 model;

131 gbar = GDSGEMIN(q_next’ };

132  [bFnext nbFnext - thetasgbarskFne Transformaior
133 bGnext = -bFnext; % market cl

134

135 nxF + c*AxkF; ] f farmer
149 = muF*nbFnext;

150 = etaxnxF;

156

161

162

163  budgetF;

164 MC_Y;

165 consis_omega_next’;

166 end;

167  end;

e Trick 2: Transform collateral and consumption constraints into

nbyr1 = b1 +0gq

t+1

kev1 > 0, and nxy = x; + cArky > 0, and include nb; 1

and nx, as unknowns, as in Bianchi2011 and equation (2).

e Also initialize by solving the corresponding last-period problem (model_init)
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Inspecting the Policy Functions

Farmer’s Consumption with A4; = Ay Farmer’s Bond Holding

Capital Price

e highly nonlinear results across regions: the collateral constraint binds with
low k; and low w;; the consumption constraint binds with high k; and low w;.
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Inspecting the Ergodic Distribution

10t Distribution of k 10 Distribution of «

WiBinding CC
[EINon-binding CC

No. of Counts
N
o

No. of Counts

N

e The ergodic distributions of k and w confirm our choice of state space.
e The collateral constraint binds with prob. 0.83; and consumption constraint
binds with prob. 0.82.
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Generalized Impulse Response Function

e How to generate IRF with recurrent shock and without steady state?
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Generalized Impulse Response Function

e How to generate IRF with recurrent shock and without steady state?
e Assume A; € {A < A* < Z}. Pick an initial position (ko,wo, Ao).
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Generalized Impulse Response Function

e How to generate IRF with recurrent shock and without steady state?

e Assume A; € {A < A* < Z}. Pick an initial position (ko,wo, Ao).

o Step 1: set A; = A at t = 1, simulate forward and compute the average (left
figure):

Path after Positive Shock at t=1

1 . Positive v.s. Normal Shock at t=1

Output
Output

— Average over 20 samples = Ave path after positive shock
= Average over 1000 samples |—Ave path after normal shock
0 5 10 15 20 0 5 10 15

Time Time

20
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Generalized Impulse Response Function

e How to generate IRF with recurrent shock and without steady state?

e Assume A; € {A < A* < Z}. Pick an initial position (ko,wo, Ao).

o Step 1: set A; = A at t = 1, simulate forward and compute the average (left
figure):

Path after Positive Shock at t=1 . Positive v.s. Normal Shock at t=1

11

Output
Output

— Average over 20 samples = Ave path after positive shock
= Average over 1000 samples |—Ave path after normal shock
0 5 10 15 20 0 5 10 15 20
Time Time

e Step 2: set A; = A* at t =1, and compute the average of the simulation
(right figure).
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Generalized Impulse Response Function

e How to generate IRF with recurrent shock and without steady state?

e Assume A; € {A < A* < Z}. Pick an initial position (ko,wo, Ao).

o Step 1: set A; = A at t = 1, simulate forward and compute the average (left
figure):

. Path after Positive Shock at t=1

. Positive v.s. Normal Shock at t=1

Output
Output

— Average over 20 samples = Ave path after positive shock
= Average over 1000 samples |—Ave path after normal shock
0 5 10 15 20 0 5 10 15 20
Time Time

e Step 2: set A; = A* at t =1, and compute the average of the simulation
(right figure).
e Step 3: Take their difference starting from t = 1 as conditional IRF.
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Generalized Impulse Response Function

e How to generate IRF with recurrent shock and without steady state?

e Assume A; € {A < A* < Z}. Pick an initial position (ko,wo, Ao).

o Step 1: set A; = A at t = 1, simulate forward and compute the average (left
figure):

. Path after Positive Shock at t=1 Positive v.s. Normal Shock at t=1

Output
Output

— Average over 20 samples = Ave path after positive shock
= Average over 1000 samples |—Ave path after normal shock
0 5 10 15 20 0 5 10 15 20
Time Time

e Step 2: set A; = A* at t =1, and compute the average of the simulation
(right figure).
e Step 3: Take their difference starting from t = 1 as conditional IRF.

e Step 4: Average the conditional IRF over the ergodic distribution for
unconditional IRF. 67/74



Generalized Impulse Response Function
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e The IRFs are asymmetric and persistent, although the TFP shocks are

symmetric and temporary, thanks to collateral constraint and market
incompleteness.
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General Framework: State with Implicit Law of Motion

F <s,x,z, {s’(z/),P(”) (z’,s/(z’))}z/ez) —0.

e Question: How to evaluate the transition to future endogenous states s'(z)?
e Some admit explicit transition, as in the RBC and Bianchi example

- 5" is an explicit function of var_shock, var_state and var_policy

- Consistency equation is trivial here since s’ does not depend on z’
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F <s,x,z, {s’(z/),P(”) (z’,s/(z’))}z/ez) —0.

e Question: How to evaluate the transition to future endogenous states s'(z)?
e Some admit explicit transition, as in the RBC and Bianchi example

- 5" is an explicit function of var_shock, var_state and var_policy

- Consistency equation is trivial here since s’ does not depend on z’
e |t becomes involved with endogneous state (e.g., w; here)

- the transition of some endogenous states 5 satisfies

O:

L T]]

(s, X, z, E'(z'),x’(z’),z') ,

for some non-trivial function g.
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General Framework: State with Implicit Law of Motion

F <s,x,z, {s’(z/),P(”) (z’,s/(z’))}z/ez) —0.

e Question: How to evaluate the transition to future endogenous states s'(z)?
e Some admit explicit transition, as in the RBC and Bianchi example

- 5" is an explicit function of var_shock, var_state and var_policy

- Consistency equation is trivial here since s’ does not depend on z’
e |t becomes involved with endogneous state (e.g., w; here)

- the transition of some endogenous states 5 satisfies

0=3 (s, x,2,5 ('), x' ('), z') ,

for some non-trivial function g.
- Our solution: include §'(z’),Vz’ as unknowns and g in the equation system
- Kubler and Schmedders(03), and Elenev et al.(16) handle this differently.
See an example of the method in Elenev et al.(16) here.
e Consistency equation: the key innovation of the algorithm that enables design
of the toolbox
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Other Examples on www.gdsge.com

o GDSGE offers great flexibility. Check other examples on our website.

1. RBC with Irreversible Investment: how to introduce a continous exogenous
shock process (e.g. AR(1))

2. Heaton and Lucas (1996):
(i) Evaluate the accuracy of solutions
(i) Using consumption share (instead of wealth share) as endogenous state

3. Guvenen (2009): use one solved equilibrium as initial guess for another one

4. Bianchi (2011): use adaptive sparse grid method

5. Barro et al. (2017): deal with model with extremly high curvature (risk aversion
coefficient=100)

6. Cao and Nie (2017): different system of equations at different collocation points

7. Cao (2018): beliefs heterogeneity

8. Heterogenous-agent model: Huggett(97) with transitional dynamics, and Krusell
and Smith(98) with aggregate shocks
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Some Advice on Using GDSGE

1. Start by modifying the existing examples first. For example:
1.1 two-agent models: KM (1997), Heaton and Lucas (1996), Cao and Nie (2017),
Cao (2018)
1.2 open economy models: Bianchi (2011), Mendoza (2010)
1.3 portfolio choice and asset pricing: Heaton and Lucas (1996), Guvenen (2009)
1.4 rare disasters: Barro et.al (2017)
1.5 Heterogenous-agent models: Huggett (1997), Krusell and Smith (1998)
1.6 bubble in backward iteration: Brumm et al (2015)
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Initializing with a last-period problem in finite-horizon economies usually works
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1. Start by modifying the existing examples first. For example:
1.1 two-agent models: KM (1997), Heaton and Lucas (1996), Cao and Nie (2017),
Cao (2018)
1.2 open economy models: Bianchi (2011), Mendoza (2010)
1.3 portfolio choice and asset pricing: Heaton and Lucas (1996), Guvenen (2009)
1.4 rare disasters: Barro et.al (2017)
1.5 Heterogenous-agent models: Huggett (1997), Krusell and Smith (1998)
1.6 bubble in backward iteration: Brumm et al (2015)

2. Crucial to initialize the var_interp properly for the algorithm to work.
Initializing with a last-period problem in finite-horizon economies usually works
robustly.

3. input unit-free Euler equations: SE; (Rec,,7/c;7) —1 =0, instead of
¢ 7 — PE; (th;ﬂ) = 0. Also normalize Lagrangian multipliers to bound their
values.

4. debug: use mex_modname function in iter_-modname.m to debug.
71/74



Interface of the File

e The compiled mex file contains the libraries for the actual calculations

e The mex file is called by by the iter_ and simulate_ file, e.g. in RBC:

[GDSGE_SOL,GDSGE_F,GDSGE_AUX,GDSGE_EQVAL,GDSGE_OPT_INFO] = ...
mex_modname(GDSGE_SOL,GDSGE_LB,GDSGE_UB,GDSGE_DATA,...
GDSGE_SKIP,GDSGE_F,GDSGE_AUX,GDSGE_EQVAL);

e Input: vectors with information for all problems across collocation points

- GDSGE_SOL: the (vector of) initial points of var_policy for solving equations

- GDSGE_LB / GDSGE_UB: lower and upper bounds of var_policy to search

- GDSGE_DATA: parameters and states that characterize problems at each
collocation point
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[GDSGE_SOL,GDSGE_F,GDSGE_AUX,GDSGE_EQVAL,GDSGE_OPT_INFO] = ...
mex_modname(GDSGE_SOL,GDSGE_LB,GDSGE_UB,GDSGE_DATA, ...
GDSGE_SKIP,GDSGE_F,GDSGE_AUX,GDSGE_EQVAL);

e Qutput: vectors of output from equation solving across collocation points
- GDSGE_SOL: var_policy returned
- GDSGE_F: max absolute residual
- GDSGE_AUX: var_aux evaluated at returned var_policy
- GDSGE_EQVAL: residual of each equation at returned var_policy
- GDSGE_OPT_INFO: information returned from equation solving procedures
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Conclusion

A framework and toolbox that solves GDSGE with global methods robustly and
efficiently.

e Any models with short-run equilibrium conditions represented by equations fit
in the framework, covering classical and state-of-art models in macro, IF,
macro finance and asset pricing

e Key innovation: consistency equations to deal with endogenous states with
implicit laws of motion

e Can solve models with discrete choice (e.g., sovereign default) by smoothing
out discrete choices

e Comments and contributions welcome! gdsge.cIn2020@gmail.com
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