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Introduction



Q1: Why Global Solution?

• Dynare and other local perturbation methods provide solution around the

deterministic steady state
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• Recent studies highlight the importance of nonlinearity in DSGE models:

- financial crises in closed or open economies

- implications of rare diasters (such as COVID-19)

- portfolio choices models with many financial assets

- occasionally binding constraints (borrowing constraints, ZLB etc.)

- international finance models with portfolio choices/capital accumulation
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Q1: Why Global Solution?

• Dynare and other local perturbation methods provide solution around the

deterministic steady state

• Recent studies highlight the importance of nonlinearity in DSGE models:

- financial crises in closed or open economies

- implications of rare diasters (such as COVID-19)

- portfolio choices models with many financial assets

- occasionally binding constraints (borrowing constraints, ZLB etc.)

- international finance models with portfolio choices/capital accumulation

• Models calling for global solution:

1. models intrinsically not suited for local method

2. models with large shocks/high nonlinearity

3. equilibrium properties in different regions are significantly different

4. when precautionary behavior matters

2/74



Q2: Why GDSGE?

• GDSGE (available at www.gdsge.com): Dynare-like toolbox for global

non-linear solutions of DSGE models

• Properties of GDSGE:

1. easy to use: One only needs to provide model specification in a simple way.

2. unified framework: Encompasses many well-known incomplete markets models

with highly nonlinear dynamics

3. high efficiency and accuracy: More efficient and accurate than the original

solution methods of many important papers.

Most of the examples on our website can be solved in one minute

4. great flexibility: many options of model specification for users/can be

incorporated into the whole program
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Q3: What do We Provide?

GDSGE
Parser.gmod file

C++

MATLAB

Interior-Point 
Method

Knitro

Automatic 
Differentiation

Splines

Adaptive Sparse 
Grid

OpenMP

….

Random Number 
Generators

Print and Plot 
Utilities

Debug

….

mex

1. a unified framework that allow users to describe models in simple and intuitive

script files

2. efficient implementation that compiles these script files to C++ libraries

parallelization, equation solvers with automatic differentiation, and various

dense/sparse grid function approximation methods

3. an easy-to-use interface in MATLAB to run/debug/plot/print 4/74



Literature

• Properties and solutions of global DSGE. Coleman (1990); Duffie et al.

(1994); Magill and Quinzii (1994); Cao (2020) among others in the GE incomplete

markets literature

New: A policy iteration method that delivers both good theoretical properties

and robust numerical properties

• Computational Toolbox. Winschel and Kratzig (2010)... Many others by

providing modularized code

New: A unified framework to represent models in concise scripts. A parser to

convert model scripts. No requirements for specific programming languages

besides MATLAB

• Dealing with endogenous state variables with implicit laws of motion.

(e.g. wealth share) Kubler and Schmedders (03), Dumas and Lyasoff (12), Elenev

et al. (16)

New: Introducing consistency equations: enabling a robust algorithm
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Roadmap

Please download lecture material at http://www.gdsge.com/lectures.html

• Getting Started - A Simple RBC Model

- Equilibrium concepts

- Structure of gmod. file and toolbox usage

- An extension with irreversible investment

• General GDSGE framework

• Bianchi (2011): Sudden Stops in Open Economies

- Observe nonlinearity!

- Initiate policy functions that involve solving non-trivial equations

- Deal with endogenous borrowing constraint

- Using adaptive-grid functional approximations

• Kiyotaki and Moore (1997): Collateral Constraints with Investment

- Consistency equations for endogenous states with implicit laws of motion

- Generalized Impulse Response Functions

• Some advice on developing models using GDSGE
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Getting Started: A Simple RBC

Model



Getting Started: A Simple RBC Model

• Preferences

E
∞∑

t=0

βt c1−σ
t

1 − σ
, Lt = 1

• Technology

Production: Yt = ztK
α
t L1−α

t

Investment: Kt+1 = (1 − δ)Kt + It

• Markets clear

ct + Kt+1 = Yt + (1 − δ)Kt

• Shock: zt ∈ {zL, zH}, with Markov transition matrix Prz→z′ =

(
πLL 1 − πLL

1 − πHH πHH

)
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Solution Concepts and Equilibrium Conditions

• Given K0, a sequential competitive equilibrium is stochastic sequences:

{ct , Kt+1}∞t=0 such that

Euler equation: c−σ
t = βEt

[(
αzt+1K

α−1
t+1 + (1 − δ)

)
c−σ
t+1

]
,

Budget: ct + Kt+1 = ztK
α
t + (1 − δ)Kt .

• Notice that the equilibrium can be represented by the system of equations. In

particular, the Euler equation is necessary and sufficient for optimality.
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Solution Concepts and Equilibrium Conditions

• Given K0, a sequential competitive equilibrium is stochastic sequences:

{ct , Kt+1}∞t=0 such that

Euler equation: c−σ
t = βEt

[(
αzt+1K

α−1
t+1 + (1 − δ)

)
c−σ
t+1

]
,

Budget: ct + Kt+1 = ztK
α
t + (1 − δ)Kt .

• Notice that the equilibrium can be represented by the system of equations. In

particular, the Euler equation is necessary and sufficient for optimality.

• The GDSGE toolbox is looking for a recursive equilibrium: functions

c(z , K ), K ′(z , K ) such that

c(z , K )−σ = βE
[(

αz ′[K ′(z , K )]α−1 + (1 − δ)
)
[c(z ′, K ′(z , K ))]−σ

∣
∣
∣z
]
,

c(z , K ) + K ′(z , K ) = zKα + (1 − δ)K .
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Solution Concepts and Local v.s Global Solutions

34 35 36 37 38 39 40 41 42
33

34

35

36

37

38

39

40

41

42

43

• Local solutions: approximated around the steady state; implemented by Dynare

• Global solutions: solved at each collocation point

- need to specify the domain of state variables: K ∈ {K1, K2, . . . , KN}, with

K = K1 < K2 < . . . < KN = K .

• Local solutions approximate well for the current model
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Policy Iteration Methods, A Prelim

• We solve the recursive system via policy iterations described by

c (n)(z , K )−σ = βE
[(

αz ′[K ′(n)
(z , K )]α−1 + (1 − δ)

)
[c (n−1)(z ′, K ′(n)

(z , K ))]−σ
∣
∣
∣z
]

c (n)(z , K ) + K ′(n)
(z , K ) = zKα + (1 − δ)K

• Start from some initial conjecture c(0) (more on initialization later)

• At the n-th iteration, take function c(n−1) as given, and solve a two-equation

system for unknowns (c , K ′) for each collocation point (z , K ) to get updated

functions c(n) and K ′(n)

• Iterate until ||c(n) − c(n−1)|| < Tol, for some predetermined Tol
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Toolbox Code - Structure of the gmod File
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• parameters: parameters needed to define the model

• var shock: exogenous states (e.g., productivity z here)

- shock num: number of discrete realizations

- shock trans: the full transition matrix (e.g, Pr(z → z ′) here)
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• var state: endogenous states (e.g., capital K here)

- Need to specify a gird for each endogenous state

- For example, here the grid is specified to be a 101-point equal-spaced grid over

[0.9 × K∗, 1.1 × K∗] where K∗ is the steady state capita level

- Generally, need the range of the grid to cover the ergodic set (more on this later)
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• var interp: functions to be iterated over (c(z , K ) here)

- Need to initialize each var interp following keyword initial

- Here c(z , K ) is initialized to be consuming all available resources

- Need to specify the update of each policy function after a time step. Here it is

updated to be unknown c solved out of the equation
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• var policy: unknowns to be solved at each collocation point, c and K ′ here

- Need to specify the bounds of range over which solutions are searched for each

unknown following keyword inbound

• var aux: variables that are simple functions of other variables and need to be

returned. Each var aux needs to be defined in the model 15/74



• The system of equations for each collocation point of exogenous and

endogenous states (z , K here) needs to be defined in the model; block

• The final system of equations is defined in the equations; block

• Any evaluation necessary for defining the equations is enclosed preceding the

equations; block 16/74



• Can use parameters, var shock, var state and var policy in the model block

• A variable followed by a prime (’) defines a vector of length shock num

• A var shock (z here) followed by a prime (’) refers to this var shock across

realizations, which is of length shock num

• The line defines capital return given choice K ′ across realizations of z 17/74



• A var interp defined before (c interp here) can be used as a function to

evaluate policy functions referred by this var interp from the last iteration

• A var interp when called followed by a prime (’) returns the evaluation across

realizations of exogenous states ...
18/74



• GDSGE EXPECT is a built-in function that calculates the expectation of the

expression conditional on the current realization of exogenous states
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• Any var aux (w here) needs to be evaluated in the model block so as to be

returned

• Notice: Expressions in the model; block are executed sequentially. Do not use

a variable before it’s defined.
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• The simulate; block specifies Monte-Carlo simulations

• Need to initiate all endogenous states (K here) following keyword initial, and

the index of exogenous states following keyword initial shock

• Need to specify the transition of endogenous states (K’ = K next here)

• var simu are variables recorded; var simu must be in var policy or var aux21/74



Parse the gmod File

• Upload the gmod file to an online compiler listed on www.gdsge.com

- Also download the runtime libraries at the compiler website and add to path

- Local compiler coming soon

- Recompilation needed only if changing models (but not parameters or options)

• The online compiler returns a zip file (rbc.zip in this case), which contains

- iter modname.m and simulate modname.m that can be called in MATLAB

- mex modename: dynamic libraries that will be called to do the actual

computations
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Solve Models on Local Computers: Policy Iterations

• In MATLAB run iter rbc.m and assign results in variable IterRslt
>> IterRslt = iter_rbc;
Iter:10, Metric:0.385606, maxF:9.9913e-09
Elapsed time is 0.057094 seconds.
...
Iter:323, Metric:9.8918e-07, maxF:7.96884e-09
Elapsed time is 0.032591 seconds.

• In the printed information:

- Iter: number of iterations

- Metric: ||c (n) − c (n−1)|| where || ∙ || is the sup norm (max abs across states)

- maxF: the max of absolute residual across all equations and all states

- Elapsed time: time elapsed from the last print
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• The returned IterRslt contains model structure, converged policy functions

iterated on (i.e., var interp), and var policy and var aux. For example,

and
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• We can plot the converged policy functions or state transition functions
>> figure;
plot(IterRslt.var_state.K, IterRslt.var_policy.K_next);
xlabel(’K’); title(’Policy Functions for Next Period K’);

which produces

34 35 36 37 38 39 40 41 42

K

34

35

36

37

38

39

40

41

42
Policy Functions for Next Period K
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Simulations using the Converged Policy Iterations

• The converged policy and transition functions can be passed to simulate rbc.m

for Monte-Carlo simulations, by calling
>> SimuRslt = simulate_rbc(IterRslt);
Periods: 1000

shock K c w
2 37.89 2.755 2.392

Elapsed time is 0.818482 seconds.
...
Periods: 10000

shock K c w
2 38.45 2.774 2.405

Elapsed time is 0.795403 seconds.

• The results (stored in SimuRslt) contain the panels of shock index and

var simu defined in the simulate block.

26/74



• We can inspect the ergodic distribution of the endogenous state K
>> histogram(SimuRslt.K); title(’Histogram for K’);

which produces
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• We can inspect the simulated panels of var simu, for example
>> plot(SimuRslt.w(1:2,1:100)’); title(’Sample Paths of Wages’);

which produces the first two paths of wage for the first 100 periods
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Resolving Models with Different Parameters

• The compiled code can be reused to solve models with different parameters

For example, solve the model by increasing the size of the shock

>> options.z = [0.95,1.05]; % previously [0.99,1.01]
IterRslt = iter_rbc(options);

• Policy functions now show more visible difference across realizations of shocks
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42
Policy Functions for Next Period K

29/74



Resolving Models Starting from Converged Solutions

• A useful feature is to solve models with new parameters starting from

previously converged solutions, by passing converged solutions in WarmUp

>> options.z = [0.95,1.05]; % previously [0.99,1.01]
options.WarmUp = IterRslt;
IterRslt = iter_rbc(options);

which starts from converged solutions and converge in fewer iterations
Iter:330, Metric:0.000783625, maxF:9.89807e-09
Elapsed time is 0.051842 seconds.
...
Iter:457, Metric:9.90468e-07, maxF:7.93061e-09
Elapsed time is 0.050782 seconds.

• This can also be used to overwrite options, for example
>> options.PrintFreq = 100;
options.SaveFreq = 100;

sets the print frequency and save frequency to 100 (the default was 10)

See the toolbox website for more options

• This can be used to overwrite the range of var state to refine solutions. More

on this later
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Extending the RBC model with Irreversible Investment

• The RBC model can exhibit nonlinearity and state-dependence with simple

extensions

• Assume the investment is partially irreversible:

It ≥ φIss ,

• The optimality conditions now read

c−σ
t − μtc

−σ
t = βEt

[(
αzt+1K

α−1
t+1 + (1 − δ)

)
c−σ
t+1 − (1 − δ)μt+1c

−σ
t+1

]

μtc
−σ
t

[
Kt+1 − (1 − δ)Kt − φIss

]
= 0,

in which μtc
−σ
t is the multiplier on the investment irreversible constraint.

(Here we use μtc
−σ
t instead of μt alone to restrict its value in a box [0,1]).
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Extending the RBC model with Irreversible Investment

• The RBC model can exhibit nonlinearity and state-dependence with simple

extensions

• Assume the investment is partially irreversible:

It ≥ φIss ,

• The optimality conditions now read

c−σ
t − μtc

−σ
t = βEt

[(
αzt+1K

α−1
t+1 + (1 − δ)

)
c−σ
t+1 − (1 − δ)μt+1c

−σ
t+1

]

μtc
−σ
t

[
Kt+1 − (1 − δ)Kt − φIss

]
= 0,

in which μtc
−σ
t is the multiplier on the investment irreversible constraint.

(Here we use μtc
−σ
t instead of μt alone to restrict its value in a box [0,1]).

• We set the values in inbound for the two inequalities with Kuhn-Tucker

condition:

μt ≥ 0; Kt+1 ≥ (1 − δ)Kt + φIss . 31/74



• Include μ(z , K ) as var interp and use it to interpolate for μt+1

• Include μt as var policy.

• Modify the Euler equation and add the comp. slackness condition to system
32/74



Policy Functions with Irreversible Investment

• As shown, the investment irreversibility starts to bind (with multiplier μt > 0),

when zt is low or capital Kt is low.
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Occasionally Binding Irreversible Constraint at Ergodic Set

• As shown, the irreversible constraint binds when the realization of z is zL

• Since z is a two-point process, this binding pattern seems a bit extreme

• See toolbox website on how to introduce a continuous z process (e.g., AR(1)),

which generates richer binding patterns at the ergodic distribution
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The GDSGE Framework, Summary

• With the RBC example, we are now ready to discuss the general framework.

• Many models fit in the framework and can be transformed into gmod files

• The framework also facilitates a comparison between global v.s local solutions

• Will refer back to the RBC example to discuss abstract concepts
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Models with Short-run Equilibrium Conditions as Equations

• GDSGE is able to solve models with short-run equilibrium conditions

represented by system of equations:

F (s, x , z , {s ′(z ′), x ′(z ′)}z′∈Z) = 0 (1)

where

- z ∈ Z ⊂ Rdz : a vector of exogenous shocks (productivity z in the RBC example)

- s ∈ S ⊂ Rds : a vector of endogenous states variables (capital K )

- x ∈ X ⊂ Rdx : a vector of endogenous policy variables (c and K ′)

- s ′(z ′), x ′(z ′): future states and policies that depend on the realizations of future

shocks, (K ′ (z ′) ≡ K ′, ∀z ′; c ′ (z ′) in expectation operator);

can accommodate more general dependence than expectation

• RBC example: 2 unknowns with 2 equations: Euler equation and budget
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Models with Short-run Equilibrium Conditions as Equations

• GDSGE is able to solve models with short-run equilibrium conditions

represented by system of equations:

F (s, x , z , {s ′(z ′), x ′(z ′)}z′∈Z) = 0 (1)

where

- z ∈ Z ⊂ Rdz : a vector of exogenous shocks (productivity z in the RBC example)

- s ∈ S ⊂ Rds : a vector of endogenous states variables (capital K )

- x ∈ X ⊂ Rdx : a vector of endogenous policy variables (c and K ′)

- s ′(z ′), x ′(z ′): future states and policies that depend on the realizations of future

shocks, (K ′ (z ′) ≡ K ′, ∀z ′; c ′ (z ′) in expectation operator);

can accommodate more general dependence than expectation

• RBC example: 2 unknowns with 2 equations: Euler equation and budget

• Therefore, the toolbox (so far) cannot solve

- Decision problems that are non-concave or involve discrete choices, whose

optimality condition cannot be represented by equations.

- We are working on transforming discrete-choice into continuous-choice 36/74



Accommodate Inequality Constraints

• Models with inequality constraints

F
(
s, x , z , {s ′(z ′), x ′(z ′)}z′∈Z

)
= 0

G
(
s, x , z , {s ′(z ′), x ′(z ′)}z′∈Z

)
≥ 0

can be transformed to the general formulation (1), by writing

F̂ =

(
F

G − η

)

(2)

with η ≥ 0 being an additional policy variable and expand x̂ = (x , η)
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Accommodate Inequality Constraints

• Models with inequality constraints

F
(
s, x , z , {s ′(z ′), x ′(z ′)}z′∈Z

)
= 0

G
(
s, x , z , {s ′(z ′), x ′(z ′)}z′∈Z

)
≥ 0

can be transformed to the general formulation (1), by writing

F̂ =

(
F

G − η

)

(2)

with η ≥ 0 being an additional policy variable and expand x̂ = (x , η)

• In the investment irreversible example, we add a multiplier μ ≥ 0 into the Euler

equation and the complementary slackness condition as an additional equation

• This is how we handle occasionally binding constraints with equation solvers
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Solution Concepts and the Policy Iteration Algorithm

F (s, x , z , {s ′(z ′), x ′(z ′)}z′∈Z) = 0 (1)

• A recursive equilibrium is a solution to (1) of the form

x = P(z , s)

and

s ′(z ′) = T (z , z ′, s)

where P and T are equilibrium policy and transition functions, respectively.
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• The algorithm starts with an initial guess for policy and transition functions

{
P(0)(., .), T (0)(., ., .)

}

Given P(n) and T (n), P(n+1) and T (n+1) are determined by solving the following

system of equations:

F

(

s, x , z ,
{

s ′(z ′),P(n) (z ′, s ′(z ′))
}

z′∈Z

)

= 0.

with unknowns x and {s ′(z ′)}z′∈Z for each

(s, z) ∈ C(n) ⊂ Z × S .

• Mapping to the toolbox:

- z : var shock (z). s: var state (K). x : var policy, var aux (c, w, K’)

- s ′(z ′): K ′

- P (n): var interp (c interp)

- P (0): initial, c (0) (z , K ) = zKα + (1 − δ) K

- F : Euler equation residual and the market clearing condition
39/74



Bianchi (2011): Sudden Stops in

Open Economies



Bianchi (2011), Summary

• A model in which the borrowing constraint depends on a (commodity) price

• A negative shock that lowers the non-tradable good price tightens the

borrowing constraint, induces deleveraging and reduction of tradable

consumption, and further lowers the non-tradable price, amplifying the effects

• Can generate current account reversals resembling crises in emerging markets

• The model is highly nonlinear when the borrowing constraint binds. The

borrowing constraint binds occasionally, necessitating a global solution
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Bianchi (2011), Summary

• A model in which the borrowing constraint depends on a (commodity) price

• A negative shock that lowers the non-tradable good price tightens the

borrowing constraint, induces deleveraging and reduction of tradable

consumption, and further lowers the non-tradable price, amplifying the effects

• Can generate current account reversals resembling crises in emerging markets

• The model is highly nonlinear when the borrowing constraint binds. The

borrowing constraint binds occasionally, necessitating a global solution

• Use the model to illustrate how to

- introduce endogenous borrowing constraints

- initiate the policy function P (0)(z , s) with model init block

- refine solutions over expanded and refined grids

- use adaptive grids to obtain accurate solutions efficiently
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The Model

• Preferences:

E
[ ∞∑

t=0

βt c1−σ
t

1 − σ

]
,

with the composite consumption

ct = A
(
cT
t , cN

t

)
≡ [ω(cT

t )−η + (1 − ω)(cN
t )−η]−

1
η ,

where η > −1 determines the elasticity of substitution between tradable

consumption cT
t and non-tradable cN

t . ω ∈ (0, 1) is the weight on tradables

• Endowments:
(
yT
t , yN

t

)
follows an exogenous AR(1) process

• Incomplete-markets: saving/borrowing can only be via a state non-contingent

bond bt+1 at a world (exogenous) interest rate r
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• Budget constraint:

bt+1 + cT
t + pN

t cN
t = bt(1 + r) + yT

t + pN
t yN

t .

• Borrowing constraint:

bt+1 ≥ −(κNpN
t yN

t + κT yT
t ).

where κN , κT > 0 are parameters governing the collaterability of non-tradable

and tradable endowments
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Equilibrium Conditions

• Optimality:

pN
t =

(1 − ω

ω

)(cT
t

cN
t

)η+1

, (Tradable v.s Non-tradable)

λt = β(1 + r)Etλt+1 + μt , (Bond Euler Equation)

μt

[
bt+1 + (κNpN

t yN
t + κT yT

t )
]

= 0, (Comp. Slack. for Borrowing Constraint)

where

λt = c−σ
t

∂A(cT
t , cN

t )

∂cT
t

.

• Market clearing conditions:

cN
t = yN

t ,

cT
t = yT

t + bt(1 + r) − bt+1.
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Mapping to GDSGE Framework and the Toolbox

• Exogenous states, var shock: z = (yN
t , yT

t )

• Endogenous states, var state: s = bt

• Policy variables (unknowns), var policy: x = (μt , c
T
t , cN

t , bt+1, p
N
t )

• Policy functions iterated over, var interp: λ(z , b)

• Equations F at n-th iteration:

pN
t =

(1 − ω

ω

)(cT
t

cN
t

)η+1

,

λt = β(1 + r)E
[
λ(n−1)(z ′, bt+1)|z

]
+ μt ,

μt

[
bt+1 + (κNpN

t yN
t + κT yT

t )
]

= 0,

cN
t = yN

t ,

cT
t = yT

t + bt(1 + r) − bt+1.

• Update λ(n) = λt ; need to include λt as a var aux. 44/74



Bianchi (2011) in 100 Lines of GDSGE Code
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• The system of equations can be further simplified, by e.g., directly imposing

cN = yN

from the market clearing of non-tradable goods 46/74



• Trick 1: transform the borrowing constraint bt+1 ≥ −(κNpN
t yN

t + κT yT
t ) into

nbt+1 ≡ bt+1 + κNpN
t yN

t + κT yT
t ≥ 0,

and include nbt+1 instead of bt+1 as unknown. lb of nbt+1 is fixed at 0.

• example of dealing with inequality constraint in GDSGE in equation (2). 47/74



• Trick 2: transform the Euler equation into

1 = β(1 + r)Et
λt+1

λt
+

μt

λt
.

• The normalized multiplier μ̃t ≡
μt

λt
thus lies in [0, 1].

• The resulting Euler equation is also normalized to be in [0, 1]. 48/74



Initiate Policy Functions with model init

• Crucial to initialize the var interp properly for the algorithm to work

• Initializing with a last-period problem in finite-horizon economies usually works

• Define a potential different system of equation in model init

• Define var policy init for unknowns and var aux init for extra returns

• var aux init and var aux init can be used following keyword initial
49/74



Inspecting the Policy Functions

• Upload the gmod file. Run iter bianchi2011 in MATLAB. Plot policy functions

• As shown, the policy functions are highly nonlinear, and the nonlinearity is

state-dependent 50/74



Inspecting the Ergodic Distribution

• Pass the converged policy iteration results into simulate bianchi2011 to run

simulations, and inspect the ergodic distribution of bond holdings

• As shown, the nonlinearity region is in the model’s ergodic set (i.e., appearing

with positive probability), but is occasionally appearing 51/74



Using the Adaptive Grid Interpolation Method

• Observation: the model nonlinearity is state-dependent, i.e., linear functions

approximate well for some regions but not for other

Question: is there a more efficient way to specify grid points?

• Answer: Adaptive Grid (Ma and Zabaras, 09; Brumm and Scheidegger, 17)

• Without going into technical details, in the toolbox this can be done by adding

USE_ASG=1; USE_SPLINE=0;

in the gmod file (recompilation needed)

• See the Bianchi2011 example on the toolbox website for how to inspect policy

functions with adaptive grids
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Policy Functions with the Adaptive Grid Method

• As shown, now the toolbox automatically puts more grid points in regions with

higher nonlinearity

• Importantly, the grid can be different across realizations of exogenous shocks
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Further Discussions

In the Bianchi (2011) example on the toolbox website, we also guide you to

• solve the planner’s problem that accounts for the effects of prices on the

borrowing constraint

• interpolate policy and state transition functions for fast simulations

Other comments

• The adaptive grid method is designed based on sparse grid and is especially

powerful in dealing with models with high dimensions

- Cao, Evans and Luo (2020): a two-country IF model with incomplete markets,

portfolio choice and occasionally binding constraints, up to 6 endogenous states

• We next turn to a two-agent model with two endogenous states (capital and

bond) and occasionally binding collateral constraints
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Kiyotaki & Moore (1997) with

Risk-averse Agents



KM1997, Summary

• The interaction between capital price and output through the endogenous

collateral constraint produces amplified and persistent effects of shocks to the

economy.

• The original model is relatively simple with risk-neutral agents and

unanticipated MIT shocks.

• As a contributed example, the model is augmented with risk-averse agents and

recurrent aggregate shocks.
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KM1997, Summary

• The interaction between capital price and output through the endogenous

collateral constraint produces amplified and persistent effects of shocks to the

economy.

• The original model is relatively simple with risk-neutral agents and

unanticipated MIT shocks.

• As a contributed example, the model is augmented with risk-averse agents and

recurrent aggregate shocks.

• Use the model to illustrate how to:

- solve model with two endogenous states with occasionally binding constraints

- deal with endogenous state variable with implicit law of motion - consistency

equation

- generate Impulse Response Function with recurrent aggregate shocks
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The Model

• Two sectors: Farmers and Gatherers. Both produce using capital as input.

• A farmer maximizes

E0

∑

t

βt (xt)
1−σ

1 − σ
,

subject to the budget constraint:

xt + qtkt+1 +
bt+1

Rt
= yt + qtkt + bt ,

where production yt = At (a + c) kt . She is also subject to:

xt ≥ cAtkt ,

bt+1 + θq
t+1

kt+1 ≥ 0,

in which θ ∈ [0, 1], and q
t+1

is the lowest possible capital price in the next

period.
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The Model

• Similarly, a gatherer maximizes

E0

∑

t

(β′)
t (x ′

t)
1−σ

1 − σ
,

subject to the budget constraint,

x ′
t + qtk

′
t+1 +

b′
t+1

Rt
= y ′

t + qtk
′
t + bt ,

in which her production function is concave, y ′
t = At (k ′

t)
α

. Assume At = δAt

with δ < 1, and β′ > β.
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• Optimality:

(xt)
−σ − λt + ηt = 0, (FOC of xt)

ηt (xt − Atckt) = 0, (Slackness of xt)

−qtλt + θq
t+1

μt + βEt {ξt+1} = 0, (FOC of kt)

−
1

Rt
λt + μt + βEt {λt+1} = 0, (FOC of bt)

μt

[
θq

t+1
kt+1 + bt+1

]
= 0, (Slackness of CC)

(
x ′

t

)−σ
− λ′

t = 0, (FOC of x ′
t )

qt = β′Et

{(
qt+1 + α

(
k ′

t+1

)α−1
)

λ′
t+1/λ′

t

}
, (FOC of k ′

t )

1 = β′RtEt

{
λ′

t+1/λ′
t

}
. (FOC of b′

t)

with auxiliary variable ξt+1=(qt+1 + a + c) λt+1 − cηt+1 to simplify notation.

• Market clearing conditions:

bt+1 + b′
t+1 = 0,

kt+1 + k ′
t+1 = K ,

xt + x ′
t = Yt = yt + y ′

t . 58/74



Wealth Share as Endogenous State

• Define the farmers’ and gatherers’ wealth shares as

ωt =
qtkt + bt

qtK
,

ω′
t =

qtk
′
t + b′

t

qtK
.

In equilibrium, the market clearing conditions imply ωt + ω′
t = 1. Thus we only

need to keep track of ωt .

• We use {k , ω} as endogenous states, instead of {k , b}.
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Wealth Share as Endogenous State

• Define the farmers’ and gatherers’ wealth shares as

ωt =
qtkt + bt

qtK
,

ω′
t =

qtk
′
t + b′

t

qtK
.

In equilibrium, the market clearing conditions imply ωt + ω′
t = 1. Thus we only

need to keep track of ωt .

• We use {k , ω} as endogenous states, instead of {k , b}.

• In general, using ωt has 3 advantages:

1. avoid multiple equilibria issues (as in the current model)

2. easy to determine the feasible set of state (ω = 1 − θ)

3. reduce dimensionality in models with many assets

(Heaton and Lucas, 96; Kubler and Schmedders, 03; Cao and Nie, 17)
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Mapping to GDSGE and Consistency Equation

• Exogenous state, var shock: z = At

• Endogenous states, var state: s = (kt , ωt)

• Policy variables (unknowns), var policy: x = (xt , x
′
t , kt+1, bt+1, Rt , qt , ηt , μt)

• Future policy functions, var interp:
(
λt+1, λ

′
t+1, qt+1, ξt+1

)
= P(n−1) (At+1, kt+1, ωt+1)
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• Future policy functions, var interp:
(
λt+1, λ

′
t+1, qt+1, ξt+1

)
= P(n−1) (At+1, kt+1, ωt+1)

• Wait! Do we know endogenous state ωt+1?

ωt+1 (zt , st , zt+1) =
qt+1 (zt+1, kt+1, ωt+1) kt+1 + bt+1

qt+1 (zt+1, kt+1, ωt+1) K
.
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Mapping to GDSGE and Consistency Equation

• Exogenous state, var shock: z = At

• Endogenous states, var state: s = (kt , ωt)

• Policy variables (unknowns), var policy: x = (xt , x
′
t , kt+1, bt+1, Rt , qt , ηt , μt)

• Future policy functions, var interp:
(
λt+1, λ

′
t+1, qt+1, ξt+1

)
= P(n−1) (At+1, kt+1, ωt+1)

• Wait! Do we know endogenous state ωt+1?

ωt+1 (zt , st , zt+1) =
qt+1 (zt+1, kt+1, ωt+1) kt+1 + bt+1

qt+1 (zt+1, kt+1, ωt+1) K
.

• Solution: we include {ωt+1 (zt+1)} as unknowns, and the consistency

equation above in equations;.

• Revised var policy: x = (xt , x
′
t , kt+1, bt+1, Rt , qt , ηt , μt , {ωt+1 (zt+1)})

• Need to include (λt , λ
′
t , ξt) into var aux
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KM in GDSGE Code
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• Notice we set {ωt+1 (zt+1)} as unknown, and derive

ω̃t+1 (zt+1) = qt+1(zt+1)kt+1+bt+1

qt+1(zt+1)K
∀zt+1.

Consistency equation requires ωt+1 (zt+1) = ω̃t+1 (zt+1) ∀zt+1.

• We can derive current debt level by bt = qt

(
ωtK − kt

)
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• Trick 1: Use log of
{
λt+1, λ

′
t+1, ξt+1

}
for interpolation to reduce nonlinearity.

• GDSGEINTERP VEC evaluates future variables in var interp once for all.

• As mentioned, GDSGE can accommodate more general dependence on future

policy than expectation.
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• Trick 2: Transform collateral and consumption constraints into

nbt+1 = bt+1 + θq
t+1

kt+1 ≥ 0, and nxt = xt + cAtkt ≥ 0, and include nbt+1

and nxt as unknowns, as in Bianchi2011 and equation (2).

• Also initialize by solving the corresponding last-period problem (model init)
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Inspecting the Policy Functions
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• highly nonlinear results across regions: the collateral constraint binds with

low kt and low ωt ; the consumption constraint binds with high kt and low ωt .
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Inspecting the Ergodic Distribution

• The ergodic distributions of k and ω confirm our choice of state space.

• The collateral constraint binds with prob. 0.83; and consumption constraint

binds with prob. 0.82.
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Generalized Impulse Response Function

• How to generate IRF with recurrent shock and without steady state?
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Generalized Impulse Response Function

• How to generate IRF with recurrent shock and without steady state?

• Assume At ∈
{
A < A∗ < A

}
. Pick an initial position (k0, ω0, A0).

• Step 1: set A1 = A at t = 1, simulate forward and compute the average (left

figure):
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• Step 2: set A1 = A∗ at t = 1, and compute the average of the simulation

(right figure).
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• Step 2: set A1 = A∗ at t = 1, and compute the average of the simulation

(right figure).

• Step 3: Take their difference starting from t = 1 as conditional IRF.
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Generalized Impulse Response Function

• How to generate IRF with recurrent shock and without steady state?

• Assume At ∈
{
A < A∗ < A

}
. Pick an initial position (k0, ω0, A0).

• Step 1: set A1 = A at t = 1, simulate forward and compute the average (left

figure):
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• Step 2: set A1 = A∗ at t = 1, and compute the average of the simulation

(right figure).

• Step 3: Take their difference starting from t = 1 as conditional IRF.

• Step 4: Average the conditional IRF over the ergodic distribution for

unconditional IRF. 67/74



Generalized Impulse Response Function
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• The IRFs are asymmetric and persistent, although the TFP shocks are

symmetric and temporary, thanks to collateral constraint and market

incompleteness.
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General Framework: State with Implicit Law of Motion

F

(

s, x , z ,
{

s ′(z ′),P(n) (z ′, s ′(z ′))
}

z′∈Z

)

= 0.

• Question: How to evaluate the transition to future endogenous states s ′(z ′)?

• Some admit explicit transition, as in the RBC and Bianchi example

- s ′ is an explicit function of var shock, var state and var policy

- Consistency equation is trivial here since s ′ does not depend on z ′

69/74
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s ′(z ′),P(n) (z ′, s ′(z ′))
}

z′∈Z

)

= 0.

• Question: How to evaluate the transition to future endogenous states s ′(z ′)?

• Some admit explicit transition, as in the RBC and Bianchi example

- s ′ is an explicit function of var shock, var state and var policy

- Consistency equation is trivial here since s ′ does not depend on z ′

• It becomes involved with endogneous state (e.g., ωt here)

- the transition of some endogenous states ˉ̄s satisfies

0 = ˉ̄g
(
s, x , z , ˉ̄s ′(z ′), x ′(z ′), z ′) ,

for some non-trivial function ˉ̄g .
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General Framework: State with Implicit Law of Motion

F

(

s, x , z ,
{

s ′(z ′),P(n) (z ′, s ′(z ′))
}

z′∈Z

)

= 0.

• Question: How to evaluate the transition to future endogenous states s ′(z ′)?

• Some admit explicit transition, as in the RBC and Bianchi example

- s ′ is an explicit function of var shock, var state and var policy

- Consistency equation is trivial here since s ′ does not depend on z ′

• It becomes involved with endogneous state (e.g., ωt here)

- the transition of some endogenous states ˉ̄s satisfies

0 = ˉ̄g
(
s, x , z , ˉ̄s ′(z ′), x ′(z ′), z ′) ,

for some non-trivial function ˉ̄g .

- Our solution: include ˉ̄s ′(z ′), ∀z ′ as unknowns and ˉ̄g in the equation system

- Kubler and Schmedders(03), and Elenev et al.(16) handle this differently.

See an example of the method in Elenev et al.(16) here.

• Consistency equation: the key innovation of the algorithm that enables design

of the toolbox
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Advice on Using GDSGE and

Conclusion



Other Examples on www.gdsge.com

• GDSGE offers great flexibility. Check other examples on our website.

1. RBC with Irreversible Investment: how to introduce a continous exogenous

shock process (e.g. AR(1))

2. Heaton and Lucas (1996):

(i) Evaluate the accuracy of solutions

(ii) Using consumption share (instead of wealth share) as endogenous state

3. Guvenen (2009): use one solved equilibrium as initial guess for another one

4. Bianchi (2011): use adaptive sparse grid method

5. Barro et al. (2017): deal with model with extremly high curvature (risk aversion

coefficient=100)

6. Cao and Nie (2017): different system of equations at different collocation points

7. Cao (2018): beliefs heterogeneity

8. Heterogenous-agent model: Huggett(97) with transitional dynamics, and Krusell

and Smith(98) with aggregate shocks
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Some Advice on Using GDSGE

1. Start by modifying the existing examples first. For example:

1.1 two-agent models: KM (1997), Heaton and Lucas (1996), Cao and Nie (2017),

Cao (2018)

1.2 open economy models: Bianchi (2011), Mendoza (2010)

1.3 portfolio choice and asset pricing: Heaton and Lucas (1996), Guvenen (2009)

1.4 rare disasters: Barro et.al (2017)

1.5 Heterogenous-agent models: Huggett (1997), Krusell and Smith (1998)

1.6 bubble in backward iteration: Brumm et al (2015)
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2. Crucial to initialize the var interp properly for the algorithm to work.

Initializing with a last-period problem in finite-horizon economies usually works

robustly.

3. input unit-free Euler equations: βEt

(
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−σ
t+1/c−σ

t
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− 1 = 0, instead of

c−σ
t − βEt
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Rtc

−σ
t+1

)
= 0. Also normalize Lagrangian multipliers to bound their

values.
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1.2 open economy models: Bianchi (2011), Mendoza (2010)

1.3 portfolio choice and asset pricing: Heaton and Lucas (1996), Guvenen (2009)

1.4 rare disasters: Barro et.al (2017)

1.5 Heterogenous-agent models: Huggett (1997), Krusell and Smith (1998)

1.6 bubble in backward iteration: Brumm et al (2015)

2. Crucial to initialize the var interp properly for the algorithm to work.

Initializing with a last-period problem in finite-horizon economies usually works

robustly.

3. input unit-free Euler equations: βEt

(
Rtc

−σ
t+1/c−σ

t

)
− 1 = 0, instead of

c−σ
t − βEt

(
Rtc

−σ
t+1

)
= 0. Also normalize Lagrangian multipliers to bound their

values.

4. debug: use mex modname function in iter modname.m to debug.
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Interface of the mex File

• The compiled mex file contains the libraries for the actual calculations

• The mex file is called by by the iter and simulate file, e.g. in RBC:

[GDSGE_SOL,GDSGE_F,GDSGE_AUX,GDSGE_EQVAL,GDSGE_OPT_INFO] = ...
mex_modname(GDSGE_SOL,GDSGE_LB,GDSGE_UB,GDSGE_DATA,...
GDSGE_SKIP,GDSGE_F,GDSGE_AUX,GDSGE_EQVAL);

• Input: vectors with information for all problems across collocation points

- GDSGE SOL: the (vector of) initial points of var policy for solving equations

- GDSGE LB / GDSGE UB: lower and upper bounds of var policy to search

- GDSGE DATA: parameters and states that characterize problems at each

collocation point
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[GDSGE_SOL,GDSGE_F,GDSGE_AUX,GDSGE_EQVAL,GDSGE_OPT_INFO] = ...
mex_modname(GDSGE_SOL,GDSGE_LB,GDSGE_UB,GDSGE_DATA,...
GDSGE_SKIP,GDSGE_F,GDSGE_AUX,GDSGE_EQVAL);

• Output: vectors of output from equation solving across collocation points

- GDSGE SOL: var policy returned

- GDSGE F: max absolute residual

- GDSGE AUX: var aux evaluated at returned var policy

- GDSGE EQVAL: residual of each equation at returned var policy

- GDSGE OPT INFO: information returned from equation solving procedures
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Conclusion

• A framework and toolbox that solves GDSGE with global methods robustly and

efficiently.

• Any models with short-run equilibrium conditions represented by equations fit

in the framework, covering classical and state-of-art models in macro, IF,

macro finance and asset pricing

• Key innovation: consistency equations to deal with endogenous states with

implicit laws of motion

• Can solve models with discrete choice (e.g., sovereign default) by smoothing

out discrete choices

• Comments and contributions welcome! gdsge.cln2020@gmail.com
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