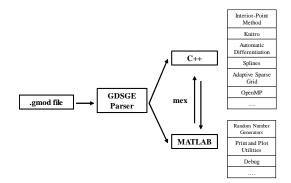
Global DSGE Models

Dan Cao (Georgetown University) Wenlan Luo (Tsinghua University) Guangyu Nie (Shanghai University of Finance and Economics) PHBS, July 7, 2020

Introduction

• Dynare and other local perturbation methods provide solution around the deterministic steady state

- Dynare and other local perturbation methods provide solution around the deterministic steady state
- Recent studies highlight the importance of nonlinearity in DSGE models:
 - financial crises in closed or open economies
 - implications of rare diasters (such as COVID-19)
 - portfolio choices models with many financial assets
 - occasionally binding constraints (borrowing constraints, ZLB etc.)
 - international finance models with portfolio choices/capital accumulation


- Dynare and other local perturbation methods provide solution around the deterministic steady state
- Recent studies highlight the importance of nonlinearity in DSGE models:
 - financial crises in closed or open economies
 - implications of rare diasters (such as COVID-19)
 - portfolio choices models with many financial assets
 - occasionally binding constraints (borrowing constraints, ZLB etc.)
 - international finance models with portfolio choices/capital accumulation
- Models calling for global solution:
 - 1. models intrinsically not suited for local method
 - 2. models with large shocks/high nonlinearity
 - 3. equilibrium properties in different regions are significantly different
 - 4. when precautionary behavior matters

- GDSGE (available at www.gdsge.com): Dynare-like toolbox for global non-linear solutions of DSGE models
- Properties of GDSGE:
 - 1. easy to use: One only needs to provide model specification in a simple way.
 - 2. unified framework: Encompasses many well-known incomplete markets models with highly nonlinear dynamics
 - high efficiency and accuracy: More efficient and accurate than the original solution methods of many important papers.

Most of the examples on our website can be solved in one minute

4. great flexibility: many options of model specification for users/can be incorporated into the whole program

Q3: What do We Provide?

- 1. a unified framework that allow users to describe models in simple and intuitive script files
- 2. efficient implementation that compiles these script files to C++ libraries parallelization, equation solvers with automatic differentiation, and various dense/sparse grid function approximation methods
- 3. an easy-to-use interface in MATLAB to run/debug/plot/print

Literature

• **Properties and solutions of global DSGE.** Coleman (1990); Duffie et al. (1994); Magill and Quinzii (1994); Cao (2020) among others in the GE incomplete markets literature

New: A policy iteration method that delivers both good theoretical properties and robust numerical properties

- Computational Toolbox. Winschel and Kratzig (2010)... Many others by providing modularized code
 New: A unified framework to represent models in concise scripts. A parser to convert model scripts. No requirements for specific programming languages besides MATLAB
- Dealing with endogenous state variables with implicit laws of motion. (e.g. wealth share) Kubler and Schmedders (03), Dumas and Lyasoff (12), Elenev et al. (16)

New: Introducing consistency equations: enabling a robust algorithm

Roadmap

Please download lecture material at http://www.gdsge.com/lectures.html

- Getting Started A Simple RBC Model
 - Equilibrium concepts
 - Structure of gmod. file and toolbox usage
 - An extension with irreversible investment
- General GDSGE framework
- Bianchi (2011): Sudden Stops in Open Economies
 - Observe nonlinearity!
 - Initiate policy functions that involve solving non-trivial equations
 - Deal with endogenous borrowing constraint
 - Using adaptive-grid functional approximations
- Kiyotaki and Moore (1997): Collateral Constraints with Investment
 - Consistency equations for endogenous states with implicit laws of motion
 - Generalized Impulse Response Functions
- Some advice on developing models using GDSGE

Getting Started: A Simple RBC Model

Getting Started: A Simple RBC Model

• Preferences

$$\mathbb{E}\sum_{t=0}^{\infty}\beta^{t}\frac{c_{t}^{1-\sigma}}{1-\sigma}, \quad L_{t}=1$$

• Technology

Production:
$$Y_t = z_t K_t^{\alpha} L_t^{1-\alpha}$$

Investment: $K_{t+1} = (1-\delta)K_t + I_t$

• Markets clear

$$c_t + K_{t+1} = Y_t + (1 - \delta)K_t$$

• Shock: $z_t \in \{z_L, z_H\}$, with Markov transition matrix $\Pr_{z \to z'} = \begin{pmatrix} \pi_{LL} & 1 - \pi_{LL} \\ 1 - \pi_{HH} & \pi_{HH} \end{pmatrix}$

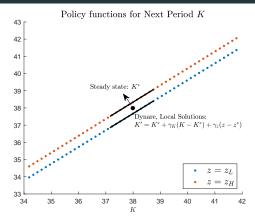
Solution Concepts and Equilibrium Conditions

• Given K_0 , a sequential competitive equilibrium is stochastic sequences: $\{c_t, K_{t+1}\}_{t=0}^{\infty}$ such that

> Euler equation: $c_t^{-\sigma} = \beta \mathbb{E}_t \left[\left(\alpha z_{t+1} \mathcal{K}_{t+1}^{\alpha-1} + (1-\delta) \right) c_{t+1}^{-\sigma} \right],$ Budget: $c_t + \mathcal{K}_{t+1} = z_t \mathcal{K}_t^{\alpha} + (1-\delta) \mathcal{K}_t.$

• Notice that the equilibrium can be represented by the system of equations. In particular, the Euler equation is necessary and sufficient for optimality.

Solution Concepts and Equilibrium Conditions


• Given K_0 , a sequential competitive equilibrium is stochastic sequences: $\{c_t, K_{t+1}\}_{t=0}^{\infty}$ such that

> Euler equation: $c_t^{-\sigma} = \beta \mathbb{E}_t \left[\left(\alpha z_{t+1} \mathcal{K}_{t+1}^{\alpha-1} + (1-\delta) \right) c_{t+1}^{-\sigma} \right],$ Budget: $c_t + \mathcal{K}_{t+1} = z_t \mathcal{K}_t^{\alpha} + (1-\delta) \mathcal{K}_t.$

- Notice that the equilibrium can be represented by the system of equations. In particular, the Euler equation is necessary and sufficient for optimality.
- The GDSGE toolbox is looking for a recursive equilibrium: functions c(z, K), K'(z, K) such that

$$\begin{aligned} \boldsymbol{c}(\boldsymbol{z},\boldsymbol{K})^{-\sigma} &= \beta \mathbb{E}\left[\left(\alpha \boldsymbol{z}'[\boldsymbol{K}'(\boldsymbol{z},\boldsymbol{K})]^{\alpha-1} + (1-\delta)\right)\left[\boldsymbol{c}(\boldsymbol{z}',\boldsymbol{K}'(\boldsymbol{z},\boldsymbol{K}))\right]^{-\sigma} \middle| \boldsymbol{z} \right],\\ \boldsymbol{c}(\boldsymbol{z},\boldsymbol{K}) + \boldsymbol{K}'(\boldsymbol{z},\boldsymbol{K}) &= \boldsymbol{z}\boldsymbol{K}^{\alpha} + (1-\delta)\boldsymbol{K}. \end{aligned}$$

Solution Concepts and Local v.s Global Solutions

- Local solutions: approximated around the steady state; implemented by Dynare
- Global solutions: solved at each collocation point
 - need to specify the domain of state variables: $K \in \{K_1, K_2, \dots, K_N\}$, with

$$\underline{K} = K_1 < K_2 < \ldots < K_N = \overline{K}.$$

• Local solutions approximate well for the current model

• We solve the recursive system via policy iterations described by

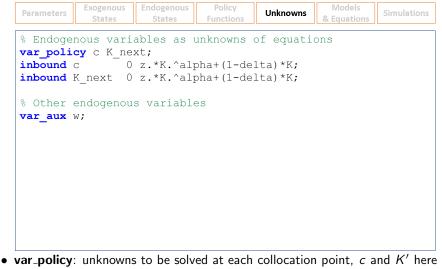
$$c^{(n)}(z,K)^{-\sigma} = \beta \mathbb{E}\left[\left(\alpha z'[K'^{(n)}(z,K)]^{\alpha-1} + (1-\delta)\right)[c^{(n-1)}(z',K'^{(n)}(z,K))]^{-\sigma} \middle| z\right] \\ c^{(n)}(z,K) + K'^{(n)}(z,K) = zK^{\alpha} + (1-\delta)K$$

- Start from some initial conjecture $c^{(0)}$ (more on initialization later)
- At the *n*-th iteration, take function c⁽ⁿ⁻¹⁾ as given, and solve a two-equation system for unknowns (c, K') for each collocation point (z, K) to get updated functions c⁽ⁿ⁾ and K⁽ⁿ⁾
- Iterate until $||c^{(n)} c^{(n-1)}|| < \text{Tol}$, for some predetermined Tol

Toolbox Code - Structure of the gmod File

1 % parameters parameters beta sigma alpha delta; beta = 0.09; % ERA coefficient sigma = 0.05; % CRA coefficient 6 delta = 0.05; % copicaliant rate	Parameters
* The Encourse States * *	Exogenous States
1 The Endopension States Ver_states for the state of the st	Endogenous States
2 1 Linterp	Policy Functions
3) * Endogenous variables as unknowns of equations * var policy of k_makit 5) inhound c 0 x. W. alpha+(i-dalta)*K; 10 inhound f_maxi 0 x. W. alpha+(i-dalta)*K; 11 inhound f_maxi 0 x. W. alpha+(i-dalta)*K;	Unknowns
38 % Other endogenous variables 39 var_aux w; 40	
<pre>Noti: thought constraints u_prime = c'(-signa); wpine = c'(-signa); uprime = c'(-signa); thousants the interpolation object to get future consumption c_future ' = c_interpolation object to get future 'mpk_next'!/u_prime; rodget_rosional = r**sipha * (1-selia)*K - c - K_next; colouite other endogeneous variables w = w(1-sipha)*K'sipha; end; budget_rosiol; end;</pre>	Models and Equations
3 similate;	Simulations (Optional)

Paran	neters Exogenous States	Endogenous States	Policy Functions	Unknowns	Models & Equations	Simulations
1	% Parameters	5				
2	parameters h	oeta sigma	alpha del	ta;		
3	beta = 0.99); %	discount	factor		
4	sigma = 2.0;	90	CRRA coef	ficient		
5	alpha = 0.36	5; %	capital s	share		
6	delta = 0.02	25; %	depreciat	ion rate		
7						
8	% Exogenous	States				
9	<pre>var_shock z;</pre>					
10	<pre>shock_num =</pre>	2;				
11	z low = 0.99	; z_high =	= 1.01;			
12	$Pr_{11} = 0.9;$	Pr_hh =	= 0.9;			
13	z = [z low, z]	: high];				
14	shock trans	= [
15	Pr_11, 1-H	Pr_ll				
16	1-Pr_hh, H	'r_hh				
17];					


- parameters: parameters needed to define the model
- var_shock: exogenous states (e.g., productivity z here)
 - shock_num: number of discrete realizations
 - <code>shock_trans</code>: the full transition matrix (e.g, $\Pr(z
 ightarrow z')$ here)

		States	Functions	Unknowns	& Equations	Simulations
	nous Stat	es				
var_state	• K;					
(ss = (a	alpha/(1/	beta – 1 +	- delta))	^(1/(1-alp	oha));	
KPts = 10)1;					
KMin = Ks	ss*0.9;					
KMax = Ks	ss*1.1;					
< = 1:	inspace (K	Min,KMax,K	(Pts);			
		, ,				

- **var_state**: endogenous states (e.g., capital *K* here)
 - Need to specify a gird for each endogenous state
 - For example, here the grid is specified to be a 101-point equal-spaced grid over $[0.9 \times K^*, 1.1 \times K^*]$ where K^* is the steady state capita level
 - Generally, need the range of the grid to cover the *ergodic set* (more on this later) 13/74

Parameters	Exogenous	Endogenous	Policy	Unknowns	Models	Simulatio
	States	States	Functions		& Equations	
% Interp						
-	rp c inte	rn•				
		z.*K.^alpl	$a_{2} \pm (1 - d_{2})$	+ >) *K•		
	terations	-	la+(I-del	La) "N;		
		update				
c_interp	= ;					

- Need to initialize each var_interp following keyword initial
- Here c(z, K) is initialized to be consuming all available resources
- Need to specify the update of each policy function after a time step. Here it is updated to be unknown *c* solved out of the equation

- Need to specify the bounds of range over which solutions are searched for each unknown following keyword **inbound**
- var_aux: variables that are simple functions of other variables and need to be returned. Each var_aux needs to be defined in the model

Parameters	Exogenous States	Endogenous States	Policy Functions	Unknowns	Models & Equations	Simulations
u_prime	constraints = c^(-sigma) t' = z'*alpł	;	lpha-1) + 1	-delta;		
c_future	te the inter ' = c_interp future' = c_	p'(K_next);		future con	sumption	
euler_re	ate residual sidual = 1 - lear = z*K^a	- beta*GDSGE	_EXPECT{u_p		'*kret_next	'}/u_prime;
	lte other en -alpha)*K^al		riables			
	s; residual; _clear;					

- The system of equations for each collocation point of exogenous and endogenous states (*z*, *K* here) needs to be defined in the **model**; block
- The final system of equations is defined in the equations; block
- Any evaluation necessary for defining the equations is enclosed preceding the equations; block

Parameters	Exogenous States	Endogenous States	Policy Functions	Unknowns	Models & Equations	Simulations
u prime	constraint = c^(-sigma t' = z'*alp		alpha-1) + 1	-delta kreť	$(1) = z(1) \cdot \alpha \cdot (2) = z(2) \cdot \alpha \cdot (2) = z($	$K'^{\alpha-1} + 1 - \delta$ $K'^{\alpha-1} + 1 - \delta$
c_future u_prime_ % Calcul	e' = c_inter future' = c ate residua	rpolation ok p'(K_next); _future'^(-s l of the equ - beta*GDSGE	sigma);		*	'}/u_prime;
% Calcua		alpha + (1-c ndogenous va lpha;		- K_next;		
-	residual; clear;					

- Can use parameters, var_shock, var_state and var_policy in the model block
- A variable followed by a prime (') defines a vector of length shock_num
- A var_shock (z here) followed by a prime (') refers to this var_shock across realizations, which is of length shock_num
- The line defines capital return given choice K' across realizations of z 17/74

Parameters	Exogenous States	Endogenous States	Policy Functions	Unknowns	Models & Equations	Simulations
u_prime kret_nex	-); na*K_next^(a	-			
c_future	' = c_interp	rpolation ok p'(K_next); _future'^(-s	c'	(1) = $c^{(n-1)}(z)$ (2) = $c^{(n-1)}(z)$	(1), K')	
euler_re	sidual = 1 ·	l of the equ - beta* GDSGE alpha + (1-c	E_EXPECT {u_p		'*kret_next'	}/u_prime;
	lte other en -alpha)*K^a	ndogenous va lpha;	ariables			
	s; residual; _clear;					
end;						

- A var_interp defined before (c_interp here) can be used as a function to evaluate policy functions referred by this var_interp from the last iteration
- A var_interp when called followed by a prime (') returns the evaluation across realizations of exogenous states ...

Parameters	Exogenous States	Endogenous States	Policy Functions	Unknowns	Models & Equations	Simulations
u_prime	constraint = c^(-sigma t' = z'*alpi		alpha-1) + 1	-delta;		
c_future u_prime_ <u>% Calcul</u>	' = c_inter future' = c <u>ate residua</u>	future'^(-s	sigma);			
market_c	$lear = z * K^*$	- beta* GDSGE alpha + (1-c ndogenous va	EulerResid		$\frac{' * kret_next}{_2 kret'(i')c'(i')}}{c^{-\sigma}}$	
	-alpha)*K^a					
euler_	residual; _clear;					

• **GDSGE_EXPECT** is a built-in function that calculates the expectation of the expression conditional on the current realization of exogenous states

Parameters	Exogenous States	Endogenous States	Policy Functions	Unknowns	Models & Equations	Simulations
u_prime	constraint = c^(-sigma t' = z'*alpi		alpha-1) + 1	-delta;		
c_future	' = c_inter	rpolation ok o'(K_next); _future'^(-s	-	future con	sumption	
euler_re	sidual = 1 ·	l of the equ - beta* GDSGE alpha + (1-c	E_EXPECT {u_p		'*kret_next'	}/u_prime;
% Calcua w = z*(1	lte other e -alpha)*K^a	ndogenous valpha; $w = z$	ariables $\cdot (1-\alpha)K^{\alpha}$			
	s; residual; _clear;					

- Any var_aux (w here) needs to be evaluated in the model block so as to be returned
- Notice: Expressions in the model; block are executed sequentially. Do not use a variable before it's defined.

num_sar	riods = mples = l K Kss l shock mu c K	; 1;			
num_sar initia initia var_sir K' = K	mples = L K Kss L shock mu c K	100; ; 1;			
initia var_sir K' = K_	l shock mu c K	1;			
K' = K		w;			
-	_next,				

- The simulate; block specifies Monte-Carlo simulations
- Need to initiate all endogenous states (*K* here) following keyword **initial**, and the index of exogenous states following keyword **initial shock**
- Need to specify the transition of endogenous states (K' = K_next here)
- var_simu are variables recorded; var_simu must be in var_policy or var_aux/74

Parse the gmod File

- Upload the gmod file to an online compiler listed on www.gdsge.com
 - Also download the runtime libraries at the compiler website and add to path
 - Local compiler coming soon
 - Recompilation needed only if changing models (but not parameters or options)

GDSGE: A Toolbox for Solving Global DSGE Models

- 1. Install Visual C++ 2015 Runtime [HERE]
- 2. Download, unzip, and add to matlab path [gdsge_win.zip]

- The online compiler returns a zip file (rbc.zip in this case), which contains
 - iter_modname.m and simulate_modname.m that can be called in MATLAB
 - mex_modename: dynamic libraries that will be called to do the actual computations

• In MATLAB run iter_rbc.m and assign results in variable IterRslt

```
>> IterRslt = iter_rbc;
Iter:10, Metric:0.385606, maxF:9.9913e-09
Elapsed time is 0.057094 seconds.
...
Iter:323, Metric:9.8918e-07, maxF:7.96884e-09
Elapsed time is 0.032591 seconds.
```

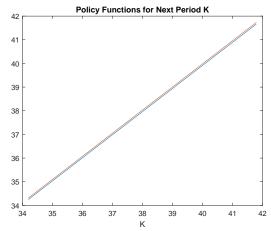
- In the printed information:
 - Iter: number of iterations
 - Metric: $||c^{(n)} c^{(n-1)}||$ where $||\cdot||$ is the sup norm (max abs across states)
 - maxF: the max of absolute residual across all equations and all states
 - Elapsed time: time elapsed from the last print

• The returned IterRsIt contains model structure, converged policy functions iterated on (i.e., var_interp), and var_policy and var_aux. For example,

>> IterRslt IterRslt = struct with fields: Metric: 9 8918e-07 Tter: 323 shock num: 2 shock trans: [2×2 double] params: [1×1 struct] var shock: [1×1 struct] var state: [1×1 struct] var policy: [1×1 struct] var interp: [1×1 struct] var aux: [1×1 struct] pp: [1×1 struct] GNDSGE PROB: [1×1 struct] var others: [1×1 struct]

and

>> IterRslt.var_policy

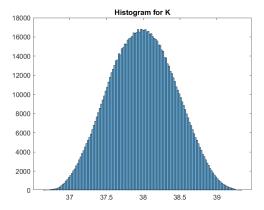

ans =

struct with fields:

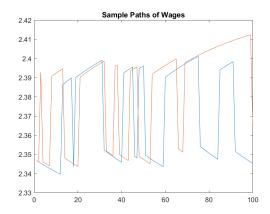
c: [2×101 double] K next: [2×101 double] • We can plot the converged policy functions or state transition functions

```
>> figure;
plot(IterRslt.var_state.K, IterRslt.var_policy.K_next);
xlabel('K'); title('Policy Functions for Next Period K');
```

which produces


Simulations using the Converged Policy Iterations

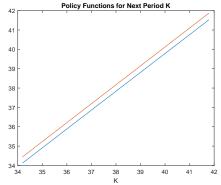
- The results (stored in SimuRslt) contain the panels of shock index and **var_simu** defined in the **simulate** block.


>> SimuRs1t
SimuRs1t =
struct with fields:
shock: [100×10001 double]
K: [100×10001 double]
c: [100×10000 double]
w: [100×10000 double]

We can inspect the ergodic distribution of the endogenous state K
 >> histogram(SimuRslt.K); title('Histogram for K');

which produces

• We can inspect the simulated panels of var_simu, for example >> plot(SimuRslt.w(1:2,1:100)'); title('Sample Paths of Wages');


which produces the first two paths of wage for the first 100 periods

Resolving Models with Different Parameters

• The compiled code can be reused to solve models with different parameters For example, solve the model by increasing the size of the shock

```
>> options.z = [0.95,1.05]; % previously [0.99,1.01]
IterRslt = iter_rbc(options);
```

• Policy functions now show more visible difference across realizations of shocks

Resolving Models Starting from Converged Solutions

• A useful feature is to solve models with new parameters starting from previously converged solutions, by passing converged solutions in WarmUp

```
>> options.z = [0.95,1.05]; % previously [0.99,1.01]
options.WarmUp = IterRslt;
IterRslt = iter_rbc(options);
```

```
which starts from converged solutions and converge in fewer iterations
Iter: 330, Metric: 0.000783625, maxF: 9.89807e-09
Elapsed time is 0.051842 seconds.
. . .
```

```
Iter:457, Metric:9.90468e-07, maxF:7.93061e-09
Elapsed time is 0.050782 seconds.
```

- This can also be used to overwrite options, for example >> options.PrintFreg = 100; options.SaveFreq = 100;sets the print frequency and save frequency to 100 (the default was 10) See the toolbox website for more options
- This can be used to overwrite the range of var_state to refine solutions. More on this later

Extending the RBC model with Irreversible Investment

- The RBC model can exhibit nonlinearity and state-dependence with simple extensions
- Assume the investment is partially irreversible:

 $I_t \ge \phi I_{ss},$

• The optimality conditions now read

$$c_{t}^{-\sigma} - \mu_{t}c_{t}^{-\sigma} = \beta \mathbb{E}_{t} \left[\left(\alpha z_{t+1} \mathcal{K}_{t+1}^{\alpha-1} + (1-\delta) \right) c_{t+1}^{-\sigma} - (1-\delta) \mu_{t+1} c_{t+1}^{-\sigma} \right] \\ \mu_{t} c_{t}^{-\sigma} \left[\mathcal{K}_{t+1} - (1-\delta) \mathcal{K}_{t} - \phi I_{ss} \right] = 0,$$

in which $\mu_t c_t^{-\sigma}$ is the multiplier on the investment irreversible constraint. (Here we use $\mu_t c_t^{-\sigma}$ instead of μ_t alone to restrict its value in a box [0,1]).

Extending the RBC model with Irreversible Investment

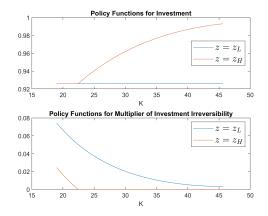
- The RBC model can exhibit nonlinearity and state-dependence with simple extensions
- Assume the investment is partially irreversible:

 $I_t \geq \phi I_{ss},$

• The optimality conditions now read

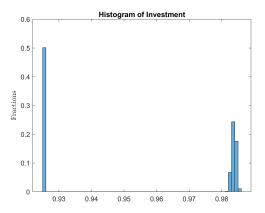
$$c_{t}^{-\sigma} - \mu_{t} c_{t}^{-\sigma} = \beta \mathbb{E}_{t} \left[\left(\alpha z_{t+1} \mathcal{K}_{t+1}^{\alpha-1} + (1-\delta) \right) c_{t+1}^{-\sigma} - (1-\delta) \mu_{t+1} c_{t+1}^{-\sigma} \right] \\ \mu_{t} c_{t}^{-\sigma} \left[\mathcal{K}_{t+1} - (1-\delta) \mathcal{K}_{t} - \phi I_{ss} \right] = 0,$$

in which $\mu_t c_t^{-\sigma}$ is the multiplier on the investment irreversible constraint. (Here we use $\mu_t c_t^{-\sigma}$ instead of μ_t alone to restrict its value in a box [0,1]).


• We set the values in **inbound** for the two inequalities with Kuhn-Tucker condition:

$$\mu_t \ge 0; \ K_{t+1} \ge (1-\delta)K_t + \phi I_{ss}.$$
 31/74

Parameters	Exogenous States	Endogenous States	Policy Functions	Unknowns	Models & Equations	Simulations	
<pre>initial mu_interp 0, % Time iterations up c_interp = c; mu_interp = mu; % Endogenous variab; var_policy c K_next inbound c 0 z</pre>	<pre>*K.[*]alpha+(1-delta) *K dote mu; mu; *K.[*]alpha+(1-delta) * ielta) *K+phi*Isa] z.*</pre>	uations K;					
_	nts ma); lpha*K_next^(alpha=1)						
<pre>% Evaluate the interpolation object to get future consumption c future' = c interp'(K next); u_prime_future' = c_future'(K next); u_prime_future' = c_future'(G next); % Calculate residual of the eguation suler_residual = 1 - beta*GDSGE_EXPECfu prime_future'*(kret_next'-(1-delta)*mu_future'))/(u_prime*(1-mu)); markec_load = z*K*alpha* (1-delta)*K - c - K_next;</pre>							
<pre>w = z*(l-alpha)*K Inv = K_next - (l- equations; euler_residual; mu*(Inv - phi*I; market_clear;</pre>	-delta)*K;						
end; end;							


- Include $\mu(z, K)$ as **var_interp** and use it to interpolate for μ_{t+1}
- Include μ_t as var_policy.
- Modify the Euler equation and add the comp. slackness condition to system

Policy Functions with Irreversible Investment

 As shown, the investment irreversibility starts to bind (with multiplier μ_t > 0), when z_t is low or capital K_t is low.

Occasionally Binding Irreversible Constraint at Ergodic Set

- As shown, the irreversible constraint binds when the realization of z is z_L
- Since z is a two-point process, this binding pattern seems a bit extreme
- See toolbox website on how to introduce a continuous z process (e.g., AR(1)), which generates richer binding patterns at the ergodic distribution

The GDSGE Framework

- With the RBC example, we are now ready to discuss the general framework.
- Many models fit in the framework and can be transformed into gmod files
- The framework also facilitates a comparison between global v.s local solutions
- Will refer back to the RBC example to discuss abstract concepts

Models with Short-run Equilibrium Conditions as Equations

• GDSGE is able to solve models with short-run equilibrium conditions represented by system of equations:

$$F(s, x, z, \{s'(z'), x'(z')\}_{z' \in \mathcal{Z}}) = 0$$
(1)

where

- $z \in \mathcal{Z} \subset \mathbb{R}^{d_z}$: a vector of exogenous shocks (productivity z in the RBC example)
- $s \in \mathcal{S} \subset \mathbb{R}^{d_s}$: a vector of endogenous states variables (capital K)
- $x \in \mathcal{X} \subset \mathbb{R}^{d_x}$: a vector of endogenous policy variables (*c* and *K'*)
- s'(z'), x'(z'): future states and policies that depend on the realizations of future shocks, (K'(z') ≡ K', ∀z'; c'(z') in expectation operator);
 can accommodate more general dependence than expectation
- RBC example: 2 unknowns with 2 equations: Euler equation and budget

Models with Short-run Equilibrium Conditions as Equations

• GDSGE is able to solve models with short-run equilibrium conditions represented by system of equations:

$$F(s, x, z, \{s'(z'), x'(z')\}_{z' \in \mathcal{Z}}) = 0$$
(1)

where

- $z \in \mathcal{Z} \subset \mathbb{R}^{d_z}$: a vector of exogenous shocks (productivity z in the RBC example)
- $s \in \mathcal{S} \subset \mathbb{R}^{d_s}$: a vector of endogenous states variables (capital K)
- $x \in \mathcal{X} \subset \mathbb{R}^{d_x}$: a vector of endogenous policy variables (*c* and *K'*)
- s'(z'), x'(z'): future states and policies that depend on the realizations of future shocks, (K'(z') ≡ K', ∀z'; c'(z') in expectation operator);
 can accommodate more general dependence than expectation
- RBC example: 2 unknowns with 2 equations: Euler equation and budget
- Therefore, the toolbox (so far) cannot solve
 - Decision problems that are non-concave or involve discrete choices, whose optimality condition cannot be represented by equations.
 - We are working on transforming discrete-choice into continuous-choice ^{36/74}

Accommodate Inequality Constraints

• Models with inequality constraints

$$\begin{aligned} & \pmb{F}\left(s, x, z, \{s'(z'), x'(z')\}_{z' \in \mathcal{Z}}\right) = 0 \\ & \pmb{G}\left(s, x, z, \{s'(z'), x'(z')\}_{z' \in \mathcal{Z}}\right) \geq 0 \end{aligned}$$

can be transformed to the general formulation (1), by writing

$$\hat{\boldsymbol{F}} = \begin{pmatrix} \boldsymbol{F} \\ \boldsymbol{G} - \boldsymbol{\eta} \end{pmatrix}$$
(2)

with $\eta \geq 0$ being an additional policy variable and expand $\hat{x} = (x, \eta)$

• Models with inequality constraints

$$\begin{split} & \pmb{F}\left(s, x, z, \{s'(z'), x'(z')\}_{z' \in \mathcal{Z}}\right) = 0 \\ & \pmb{G}\left(s, x, z, \{s'(z'), x'(z')\}_{z' \in \mathcal{Z}}\right) \geq 0 \end{split}$$

can be transformed to the general formulation (1), by writing

$$\hat{\boldsymbol{F}} = \begin{pmatrix} \boldsymbol{F} \\ \boldsymbol{G} - \boldsymbol{\eta} \end{pmatrix}$$
(2)

with $\eta \geq 0$ being an additional policy variable and expand $\hat{x} = (x, \eta)$

- In the investment irreversible example, we add a multiplier µ ≥ 0 into the Euler equation and the complementary slackness condition as an additional equation
- This is how we handle occasionally binding constraints with equation solvers

$$F(s, x, z, \{s'(z'), x'(z')\}_{z' \in \mathcal{Z}}) = 0$$
(1)

• A recursive equilibrium is a solution to (1) of the form

$$x = \mathcal{P}(z, s)$$

and

$$s'(z') = \mathcal{T}(z, z', s)$$

where \mathcal{P} and \mathcal{T} are equilibrium policy and transition functions, respectively.

• The algorithm starts with an initial guess for policy and transition functions

$$\left\{ \mathcal{P}^{(0)}(.,.), \mathcal{T}^{(0)}(.,.,.) \right\}$$

Given $\mathcal{P}^{(n)}$ and $\mathcal{T}^{(n)}$, $\mathcal{P}^{(n+1)}$ and $\mathcal{T}^{(n+1)}$ are determined by solving the following system of equations:

$$\boldsymbol{F}\left(\boldsymbol{s},\boldsymbol{x},\boldsymbol{z},\left\{\boldsymbol{s}'(\boldsymbol{z}'),\mathcal{P}^{(n)}\left(\boldsymbol{z}',\boldsymbol{s}'(\boldsymbol{z}')\right)\right\}_{\boldsymbol{z}'\in\mathcal{Z}}\right)=0.$$

with unknowns x and $\{s'(z')\}_{z'\in\mathcal{Z}}$ for each

$$(s,z) \in \mathcal{C}^{(n)} \subset \mathcal{Z} \times \mathcal{S}.$$

- Mapping to the toolbox:
 - z: var_shock (z). s: var_state (K). x: var_policy, var_aux (c, w, K')
 - s'(z'): K'
 - $\mathcal{P}^{(n)}$: **var_interp** (c_interp)
 - $\mathcal{P}^{(0)}$: initial, $c^{(0)}(z, K) = zK^{lpha} + (1 \delta)K$
 - F: Euler equation residual and the market clearing condition

Bianchi (2011): Sudden Stops in Open Economies

- A model in which the borrowing constraint depends on a (commodity) price
- A negative shock that lowers the non-tradable good price tightens the borrowing constraint, induces deleveraging and reduction of tradable consumption, and further lowers the non-tradable price, amplifying the effects
- Can generate current account reversals resembling crises in emerging markets
- The model is highly nonlinear when the borrowing constraint binds. The borrowing constraint binds occasionally, necessitating a global solution

- A model in which the borrowing constraint depends on a (commodity) price
- A negative shock that lowers the non-tradable good price tightens the borrowing constraint, induces deleveraging and reduction of tradable consumption, and further lowers the non-tradable price, amplifying the effects
- Can generate current account reversals resembling crises in emerging markets
- The model is highly nonlinear when the borrowing constraint binds. The borrowing constraint binds occasionally, necessitating a global solution
- Use the model to illustrate how to
 - introduce endogenous borrowing constraints
 - initiate the policy function $\mathcal{P}^{(0)}(z,s)$ with **model_init** block
 - refine solutions over expanded and refined grids
 - use adaptive grids to obtain accurate solutions efficiently

The Model

• Preferences:

$$\mathbb{E}\Big[\sum_{t=0}^{\infty}\beta^t \frac{c_t^{1-\sigma}}{1-\sigma}\Big],$$

with the composite consumption

$$c_t = \mathcal{A}\left(c_t^{\mathsf{T}}, c_t^{\mathsf{N}}
ight) \equiv [\omega(c_t^{\mathsf{T}})^{-\eta} + (1-\omega)(c_t^{\mathsf{N}})^{-\eta}]^{-rac{1}{\eta}},$$

where $\eta > -1$ determines the *elasticity of substitution* between tradable consumption c_t^T and non-tradable c_t^N . $\omega \in (0, 1)$ is the weight on tradables

- Endowments: (y_t^T, y_t^N) follows an exogenous AR(1) process
- Incomplete-markets: saving/borrowing can only be via a state non-contingent bond b_{t+1} at a world (exogenous) interest rate r

• Budget constraint:

$$b_{t+1} + c_t^T + p_t^N c_t^N = b_t(1+r) + y_t^T + p_t^N y_t^N.$$

• Borrowing constraint:

$$b_{t+1} \geq -(\kappa^N p_t^N y_t^N + \kappa^T y_t^T).$$

where $\kappa^N, \kappa^T > 0$ are parameters governing the *collaterability* of non-tradable and tradable endowments

Equilibrium Conditions

• Optimality:

$$\begin{split} \rho_t^N &= \Big(\frac{1-\omega}{\omega}\Big) \Big(\frac{c_t^T}{c_t^N}\Big)^{\eta+1}, \quad (\text{Tradable v.s Non-tradable})\\ \lambda_t &= \beta(1+r) \mathbb{E}_t \lambda_{t+1} + \mu_t, \quad (\text{Bond Euler Equation})\\ \mu_t \Big[b_{t+1} + \big(\kappa^N p_t^N y_t^N + \kappa^T y_t^T \big) \Big] = 0, \quad (\text{Comp. Slack. for Borrowing Constraint}) \end{split}$$

where

$$\lambda_t = c_t^{-\sigma} \frac{\partial \mathcal{A}(c_t^T, c_t^N)}{\partial c_t^T}.$$

• Market clearing conditions:

$$c_t^N = y_t^N,$$

$$c_t^T = y_t^T + b_t(1+r) - b_{t+1}.$$

Mapping to GDSGE Framework and the Toolbox

- Exogenous states, **var_shock**: $z = (y_t^N, y_t^T)$
- Endogenous states, **var_state**: $s = b_t$
- Policy variables (unknowns), **var_policy**: $x = (\mu_t, c_t^T, c_t^N, b_{t+1}, p_t^N)$
- Policy functions iterated over, **var_interp**: $\lambda(z, b)$
- Equations **F** at *n*-th iteration:

$$\begin{split} p_t^N &= \left(\frac{1-\omega}{\omega}\right) \left(\frac{c_t^T}{c_t^N}\right)^{\eta+1},\\ \lambda_t &= \beta(1+r) \mathbb{E} \left[\lambda^{(n-1)}(z', b_{t+1})|z\right] + \mu_t,\\ \mu_t \left[b_{t+1} + (\kappa^N p_t^N y_t^N + \kappa^T y_t^T)\right] &= 0,\\ c_t^N &= y_t^N,\\ c_t^T &= y_t^T + b_t(1+r) - b_{t+1}. \end{split}$$

• Update $\lambda^{(n)} = \lambda_t$; need to include λ_t as a **var_aux**.

Bianchi (2011) in 100 Lines of GDSGE Code

```
53 & Implicit state transition functions
                                                                                                                  54 yar interp lambda interp:
    parameters r signa eta kappaN kappaT omega betar
                                                                                                                      initial lambda interp lambda;
                                                                                                                      lambda_interp = lambda;
    sigma = 2;
    eta = 1/0.83 - 1;
                                                                                                                  58
                                                                                                                      % Endogenous variables, bounds, and initial values
    kappaN = 0.32;
                                                                                                                  59
                                                                                                                      var policy nbNext mu cT pN;
    kappaT = 0.323
                                                                                                                  60
                                                                                                                      inbound nbNext 0.0 10.0;
    omega = 0.31;
    beta = 0.91;
                                                                                                                      inbound mu 0.0 1.0;
                                                                                                                      inbound cT 0.0 10.0;
10
                                                                                                                      inbound pN 0.0 10.0;
    var_state b;
                                                                                                                      var aux c lambda bNext;
    bPts = 101;
bMin=-0.5;
                                                                                                                      var_output bNext pN;
    bMax=0.0;
                                                                                                                  68
                                                                                                                      model-
    b=linspace(bMin, bMax, bPts);
                                                                                                                       % Non tradable market clear
                                                                                                                        cN = yN;
19 20
    var_shock yT yN;
    vPta = 4i
                                                                                                                        bNext = nbNext - (kappaN*pN*yN + kappaT*yT);
    shock_num=16;
                                                                                                                  74
                                                                                                                        lambdaFuture' = lambda_interp' (bNext);
23
24
25
26
    vTEpsilonVar = 0,00219;
    yNEpsilonVar = 0.00167;
                                                                                                                  78
                                                                                                                        c = (omega*cT^(-eta) + (1-omega)*cN^(-eta))^(-1/eta);
                                                                                                                  79
                                                                                                                         partial c partial cT = (omega < CT ( eta) + (1-omega) < N^ (-eta)) ^ (-1/eta-1) * omega * cT ( eta-1);
                                                                                                                  80
                                                                                                                        lambda = c^ (-sigma) *partial c_partial cT;
euler_residual = 1 - beta*(1+r) * GDSGE EXPECT(lambdaFuture')/lambda - mu;
     [vTTrans,vT] = markovappr(rhoYT,vTEpsilonVar^0,5,1,vPts);
28
     [yNTrans, yN] = markovappr(rhoYN, yNEpsilonVar^0.5, 1, yPts);
    shock trans = kron(yNTrans, yTTrans);
                                                                                                                  84
                                                                                                                        price_consistency = pN - ((1-omega)/omega)*(cT/cN)^(eta+1);
    [yT, yN] = ndgrid(yT, yN);
    vT = exp(vT(z)')
    vN = exp(vN(z)')
                                                                                                                         budget residual = b*(l+r)+vT+pN*vN - (bNext+cT+pN*cN);
36
    & Define the last-period problem
                                                                                                                         equations;
38
    inbound_init dummy -1.0 1.0;
                                                                                                                          euler residual;
                                                                                                                           mu*nbNext;
40
    var_aux_init c lambda;
                                                                                                                          budget_residual;
    model init;
                                                                                                                  94
                                                                                                                        end:
     cT = yT + b*(1+r);
                                                                                                                      end:
      cN = vN:
44
      c = (omega*cT^{(-eta)} + (1-omega)*cN^{(-eta)})^{(-1/eta)}
45
      partial_c_partial_cT = (omega*cT^(-eta) + (l-omega*cN^(-eta))^(-l/eta-1) * omega * cT^(-eta-1);
lambda = c'(-sigma)*partial_c partial_cT;
                                                                                                                      simulate;
                                                                                                                  98
                                                                                                                       num periods - 1000;
46 47
                                                                                                                  00
                                                                                                                        num_samples = 100;
      equations;
                                                                                                                 100
                                                                                                                        initial b 0.0
                                                                                                                        initial shock 1;
       end;
                                                                                                                        var simu c pN:
    end;
                                                                                                                      b' = bNext;
                                                                                                                      end:
```

Paramete	S Exogenous States	Endogenous States	Policy Functions	Unknowns	Models & Equations	Simulations				
12 var_stat	b;									
19 var_shoc	var shock yT yN;									
43 var inte	<pre>p lambda interp;</pre>									
48 var poli	v nbNext mu cT pN;									
<pre>49 var_policy nbbext mu of pN; 57 model; 58 model; 59 model; 50 model; 50 model; 50 model; 50 model; 50 model; 51 model; 52 model; 53 model; 54 model; 55 model; 55 model; 56 model; 57 model; 58 model; 59 model; 50 model; 50 model; 50 model; 50 model; 51 model; 52 model; 53 model; 54 model; 55 model; 55 model; 56 model; 57 model; 50 model; 50 model; 50 model; 51 model; 52 model; 53 model; 54 model; 55 mode</pre>										

• The system of equations can be further simplified, by e.g., directly imposing

$$c^N = y^N$$

from the market clearing of non-tradable goods

Pa	rameters	Exogenous States	Endogenous States	Policy Functions	Unknowns	Models & Equations	Simulations
12	<pre>var_state b;</pre>						
L 9	var_shock yT	yN;					
13	<pre>var_interp 1</pre>	ambda_interp;					
18	var policy n	bNext mu cT pN;					
19	inbound nbNe	xt 0.0 10.0;					
57	model;						
8 9	<pre>% Non trad cN = vN;</pre>	able market clear					
0	CN = YN;						
	% Transfor	m variables					
		Next - (kappaN*pN*y	N + kappaT*vT);				
3		uture values					
4	lambdaFutu	re' = lambda_interp	'(bNext);				
5 6		e Euler residuals					
			ga)*cN^(-eta))^(-1/	ota).			
			*cT^(=eta) + (1=ome		eta=1) * omega * c'	(-eta-1);	
9		^(-sigma)*partial c		gu) on (ccu)) (1)	oca 1) omoga o.	(((((())))))))))))))	
	euler resi	dual = 1 - beta* (1+	r) * GDSGE EXPECT(1	ambdaFuture'}/lambd	a - mu;		
	_						
2	<pre>% Price co</pre>						
3 4	price_cons	istency = pN - ((1 -	omega)/omega)*(cT/c	N)^(eta+1);			
9 5	% budget c	onotroint					
			pN*vN = (bNext+cT+p	N*cN) ·			
	budgee_res	10001 - 5 (111) (yr)	pu ju (bucketer)p				
3	equations;						
9	euler_re						
	mu*nbNex						
		nsistency;					
	budget_r end;	esidual;					
84	end;						

• Trick 1: transform the borrowing constraint $b_{t+1} \ge -(\kappa^N p_t^N y_t^N + \kappa^T y_t^T)$ into

$$\mathbf{n}\mathbf{b}_{t+1} \equiv b_{t+1} + \kappa^N p_t^N y_t^N + \kappa^T y_t^T \ge \mathbf{0},$$

and include nb_{t+1} instead of b_{t+1} as unknown. **Ib** of nb_{t+1} is fixed at 0.

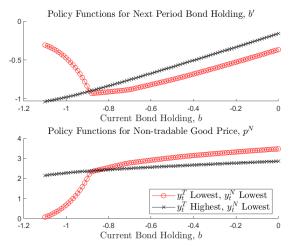
• example of dealing with inequality constraint in GDSGE in equation (2). 47/74

Pa	rameters	Exogenous States	Endogenous States	Policy Functions	Unknowns	Models & Equations	Simulations		
12	<pre>var_state b;</pre>								
19	var_shock yT	yN;							
43	var_interp 1	ambda_interp;							
48 57 58 60 62 63 64 65 66 67 68 970	<pre>inbound mu 0 model; % Non trad. cN = yN; % Transform bNext = nbl % Interp ft lambdaFutu % Calculat. c = (omega partial_c] lambda = c</pre>	able market clear m variables Next - (kappaN*pN*y uture values re' = lambda_interp e Euler residuals *cT^(-eta) + (l-omega of(-sigma)*partial cT = (omega	'(bNext); ga)*cN^(-eta))^(-1/ *cT^(-eta) + (1-ome	ega)*cN^(-eta))^(-1,	<pre>/eta=1) * omega * c1 ia - muj;</pre>	^^(-eta-1);			
71 72 73 74	<pre>% Price consistent price consistency = pN - ((1-omega)/omega)*(cT/cN)^(eta+1);</pre>								
75 76 77	<pre>% budget constraint budget residual = b*(1+r)+yT+pN*yN - (bNext+cT+pN*cN);</pre>								
78 79 80 81 82 83	<pre>euler_residual; mu*hbNext; price_consistency; budget_residual; end;</pre>								
84	i end;								

• Trick 2: transform the Euler equation into

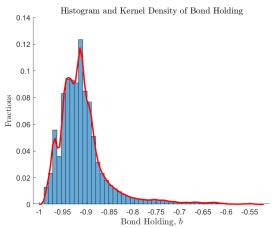
$$1 = \beta(1+r)\mathbb{E}_t \frac{\lambda_{t+1}}{\lambda_t} + \frac{\mu_t}{\lambda_t}.$$

- The normalized multiplier $\tilde{\mu}_t \equiv \frac{\mu_t}{\lambda_t}$ thus lies in [0, 1].
- The resulting Euler equation is also normalized to be in [0,1].


Initiate Policy Functions with model_init

- Crucial to initialize the var_interp properly for the algorithm to work
- · Initializing with a last-period problem in finite-horizon economies usually works
- Define a potential different system of equation in model_init
- Define var_policy_init for unknowns and var_aux_init for extra returns
- var_aux_init and var_aux_init can be used following keyword initial

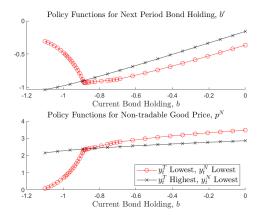
Inspecting the Policy Functions


• Upload the gmod file. Run iter_bianchi2011 in MATLAB. Plot policy functions

 As shown, the policy functions are highly nonlinear, and the nonlinearity is state-dependent 50/74

Inspecting the Ergodic Distribution

• Pass the converged policy iteration results into simulate_bianchi2011 to run simulations, and inspect the ergodic distribution of bond holdings


 As shown, the nonlinearity region is in the model's ergodic set (i.e., appearing with positive probability), but is occasionally appearing

- **Observation**: the model nonlinearity is state-dependent, i.e., linear functions approximate well for some regions but not for other **Question**: is there a more efficient way to specify grid points?
- Answer: Adaptive Grid (Ma and Zabaras, 09; Brumm and Scheidegger, 17)
- Without going into technical details, in the toolbox this can be done by adding USE_ASG=1; USE_SPLINE=0;

in the gmod file (recompilation needed)

• See the Bianchi2011 example on the toolbox website for how to inspect policy functions with adaptive grids

Policy Functions with the Adaptive Grid Method

- As shown, now the toolbox automatically puts more grid points in regions with higher nonlinearity
- Importantly, the grid can be different across realizations of exogenous shocks

In the Bianchi (2011) example on the toolbox website, we also guide you to

- solve the planner's problem that accounts for the effects of prices on the borrowing constraint
- interpolate policy and state transition functions for fast simulations

Other comments

- The adaptive grid method is designed based on sparse grid and is especially powerful in dealing with models with high dimensions
 - Cao, Evans and Luo (2020): a two-country IF model with incomplete markets, portfolio choice and occasionally binding constraints, up to 6 endogenous states
- We next turn to a two-agent model with two endogenous states (capital and bond) and occasionally binding collateral constraints

Kiyotaki & Moore (1997) with Risk-averse Agents

KM1997, Summary

- The interaction between capital price and output through the endogenous collateral constraint produces amplified and persistent effects of shocks to the economy.
- The original model is relatively simple with risk-neutral agents and unanticipated MIT shocks.
- As a contributed example, the model is augmented with risk-averse agents and recurrent aggregate shocks.

KM1997, Summary

- The interaction between capital price and output through the endogenous collateral constraint produces amplified and persistent effects of shocks to the economy.
- The original model is relatively simple with risk-neutral agents and unanticipated MIT shocks.
- As a contributed example, the model is augmented with risk-averse agents and recurrent aggregate shocks.
- Use the model to illustrate how to:
 - solve model with two endogenous states with occasionally binding constraints
 - deal with endogenous state variable with implicit law of motion consistency equation
 - generate Impulse Response Function with recurrent aggregate shocks

The Model

- Two sectors: Farmers and Gatherers. Both produce using capital as input.
- A farmer maximizes

$$\mathbb{E}_0 \sum_t \beta^t \frac{(x_t)^{1-\sigma}}{1-\sigma},$$

subject to the budget constraint:

$$x_t + q_t k_{t+1} + \frac{b_{t+1}}{R_t} = y_t + q_t k_t + b_t,$$

where production $y_t = A_t (a + c) k_t$. She is also subject to:

$$x_t \ge cA_t k_t,$$

 $b_{t+1} + \theta \underline{q}_{t+1} k_{t+1} \ge 0,$

in which $\theta \in [0,1]$, and \underline{q}_{t+1} is the lowest possible capital price in the next period.

• Similarly, a gatherer maximizes

$$\mathbb{E}_0 \sum_t \left(\beta'\right)^t \frac{\left(x_t'\right)^{1-\sigma}}{1-\sigma},$$

subject to the budget constraint,

$$x'_t + q_t k'_{t+1} + \frac{b'_{t+1}}{R_t} = y'_t + q_t k'_t + b_t,$$

in which her production function is concave, $y'_t = \underline{A}_t (k'_t)^{\alpha}$. Assume $\underline{A}_t = \delta A_t$ with $\delta < 1$, and $\beta' > \beta$.

• Optimality:

$$(x_t)^{-\sigma} - \lambda_t + \eta_t = 0, \quad (\text{FOC of } x_t)$$
$$\eta_t (x_t - A_t c k_t) = 0, \quad (\text{Slackness of } x_t)$$
$$-q_t \lambda_t + \theta \underline{q}_{t+1} \mu_t + \beta \mathbb{E}_t \{\xi_{t+1}\} = 0, \quad (\text{FOC of } k_t)$$
$$-\frac{1}{R_t} \lambda_t + \mu_t + \beta \mathbb{E}_t \{\lambda_{t+1}\} = 0, \quad (\text{FOC of } b_t)$$
$$\mu_t \left[\theta \underline{q}_{t+1} k_{t+1} + b_{t+1}\right] = 0, \quad (\text{Slackness of CC})$$
$$(x'_t)^{-\sigma} - \lambda'_t = 0, \quad (\text{FOC of } x'_t)$$
$$q_t = \beta' \mathbb{E}_t \left\{ \left(q_{t+1} + \alpha \left(k'_{t+1} \right)^{\alpha - 1} \right) \lambda'_{t+1} / \lambda'_t \right\}, \quad (\text{FOC of } k'_t)$$
$$1 = \beta' R_t \mathbb{E}_t \{\lambda'_{t+1} / \lambda'_t\}. \quad (\text{FOC of } b'_t)$$

with auxiliary variable $\xi_{t+1} = (q_{t+1} + a + c) \lambda_{t+1} - c\eta_{t+1}$ to simplify notation.

• Market clearing conditions:

$$b_{t+1} + b'_{t+1} = 0,$$

$$k_{t+1} + k'_{t+1} = \overline{K},$$

$$x_t + x'_t = Y_t = y_t + y'_t.$$
58/74

Wealth Share as Endogenous State

• Define the farmers' and gatherers' wealth shares as

$$egin{aligned} \omega_t &= rac{q_t k_t + b_t}{q_t \overline{K}}, \ \omega_t' &= rac{q_t k_t' + b_t'}{q_t \overline{K}}. \end{aligned}$$

In equilibrium, the market clearing conditions imply $\omega_t + \omega'_t = 1$. Thus we only need to keep track of ω_t .

• We use $\{k, \omega\}$ as endogenous states, instead of $\{k, b\}$.

Wealth Share as Endogenous State

• Define the farmers' and gatherers' wealth shares as

$$\omega_t = \frac{q_t k_t + b_t}{q_t \overline{K}},$$
$$\omega_t' = \frac{q_t k_t' + b_t'}{q_t \overline{K}}.$$

In equilibrium, the market clearing conditions imply $\omega_t + \omega'_t = 1$. Thus we only need to keep track of ω_t .

- We use $\{k, \omega\}$ as endogenous states, instead of $\{k, b\}$.
- In general, using ω_t has 3 advantages:
 - 1. avoid multiple equilibria issues (as in the current model)
 - 2. easy to determine the feasible set of state $(\underline{\omega} = 1 \theta)$
 - reduce dimensionality in models with many assets (Heaton and Lucas, 96; Kubler and Schmedders, 03; Cao and Nie, 17)

Mapping to GDSGE and Consistency Equation

- Exogenous state, var_shock: $z = A_t$
- Endogenous states, **var_state**: $s = (k_t, \omega_t)$
- Policy variables (unknowns), var_policy: $x = (x_t, x'_t, k_{t+1}, b_{t+1}, R_t, q_t, \eta_t, \mu_t)$
- Future policy functions, var_interp:

 $(\lambda_{t+1}, \lambda'_{t+1}, q_{t+1}, \xi_{t+1}) = \mathcal{P}^{(n-1)}(A_{t+1}, k_{t+1}, \omega_{t+1})$

Mapping to GDSGE and Consistency Equation

- Exogenous state, var_shock: $z = A_t$
- Endogenous states, **var_state**: $s = (k_t, \omega_t)$
- Policy variables (unknowns), var_policy: $x = (x_t, x'_t, k_{t+1}, b_{t+1}, R_t, q_t, \eta_t, \mu_t)$
- Future policy functions, **var_interp**: $(\lambda_{t+1}, \lambda'_{t+1}, q_{t+1}, \xi_{t+1}) = \mathcal{P}^{(n-1)}(A_{t+1}, k_{t+1}, \omega_{t+1})$
- Wait! Do we know endogenous state ω_{t+1} ?

$$\omega_{t+1}(z_t, s_t, z_{t+1}) = \frac{q_{t+1}(z_{t+1}, k_{t+1}, \omega_{t+1})k_{t+1} + b_{t+1}}{q_{t+1}(z_{t+1}, k_{t+1}, \omega_{t+1})\overline{K}}$$

Mapping to GDSGE and Consistency Equation

- Exogenous state, var_shock: $z = A_t$
- Endogenous states, **var_state**: $s = (k_t, \omega_t)$
- Policy variables (unknowns), var_policy: $x = (x_t, x'_t, k_{t+1}, b_{t+1}, R_t, q_t, \eta_t, \mu_t)$
- Future policy functions, **var_interp**: $(\lambda_{t+1}, \lambda'_{t+1}, q_{t+1}, \xi_{t+1}) = \mathcal{P}^{(n-1)}(A_{t+1}, k_{t+1}, \omega_{t+1})$
- Wait! Do we know endogenous state ω_{t+1} ?

$$\omega_{t+1}(z_t, s_t, z_{t+1}) = rac{q_{t+1}(z_{t+1}, k_{t+1}, \omega_{t+1}) k_{t+1} + b_{t+1}}{q_{t+1}(z_{t+1}, k_{t+1}, \omega_{t+1}) \overline{K}}.$$


- Solution: we include {ω_{t+1} (z_{t+1})} as unknowns, and the consistency equation above in equations;.
- Revised var_policy: $x = (x_t, x'_t, k_{t+1}, b_{t+1}, R_t, q_t, \eta_t, \mu_t, \{\omega_{t+1}(z_{t+1})\})$
- Need to include $(\lambda_t, \lambda'_t, \xi_t)$ into **var_aux**

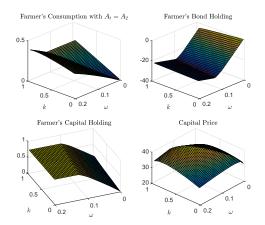
KM in GDSGE Code

```
garameters a c alower signs betal betal alpha Khar thetar
    alowsr-0.4/ * tradable productivity of gatherer
   signa-ir + risk average coefficient
    betaf-0.952 % discount factor of farmer
    alpha-0.7/ % coefficient of gatherer's production
    F207-1/
10 theta-0.9r % collateral parameter
13 EXTERP_ORDER - 27
   SIMI DESCLIPTION
15 SIMI INTERPOLE & Use intermolation for fast simplate
18 var_state kF ompgar
   kFM1m-0.02;
    kFMax-0.957
22 KF-110402CQ (KFM13, KFM2E, KFT181)
24 00002710-40
25 omegaMin-01
   onequillax-0.2/
29 5 EXCENSION STATES
30 var shock &:
   shock, trans - coup (shock, nam, shock, nam) /shock, name
   var_policy_init saf aC ats Mfnest E g rdfnest suf:
    inbound init aroast 0 Mbarr
    inbound init R
    inbound init g
    inbound_init_nbFbext 0 10:
47 yar aus init indiamhdaf indiamhdaG insputfy
49 model init: & This corresponds to the T-1 problem
51 AGDext - RDar-AFDext/ V market clearing for capital policy
52 bfnaxt - sbfnaxtr
53 bGnaxt - -bFnaxt;
                            & market clearing
55 & Rackmut at and manning) utility
56 T - A. (avc) . alow r. L. HC althau & appropriate output
ST sT - msF + c+A+XFr & consumption of farmer
59 Smultiplier for sontradable is sta-lambdaF
60 lanbdaF = xF* (-s1gma) / (1-sta) /
41 lambdaG - sG (-signa);
62 loclambdaF - loc(lambdaF))
63 loglambdaC - log(lambdaG);
   alaff = (q+A+(a+c)-(+A+ata)+lambdaff
68 sF_nost = (a+c) .kFnost + bFnosts
69 xG next = alower+kGnest*alpha + bGnest/
    lambdaF_next = xF_next*(-sigma);
71 landad_next = x4_next*(-sigma)/
73 foc_bond5 = 1 - R+beta5+lambda5_next / lambda6;
74 foc.85 = q - beta5+lambda5.sext+alower+alpha+R5sext*(alpha-1)/lambda5
```

76 foc_boodF = 1 - R-belaF-lambdaF_next / lambdaF - muTr 77 foc_X7 = q - bstaf+(a+c)+lambdaF_rext/lambdaF/ 78 slack bF = m/F+cbFrext/ 79 mlack xF - mta+mxFr 80 budgetf - d+tFnext +bFnext/R + kF - A+(a+c)+kF - cmeda+d+fbarr st MC_Y - Y - zF - zGr 83 equations: M for bondly #5 FOC NO 86 for bondy 87 FOC. XFr 91 MC Tr 92 end: 93 end: 95 var, interp loglanbdaf, interp loglanbdaG, interp logaust, interp q, interpr 96 loglambdaF_loterp = loglambdaFr 97 loglambdaG interp - loglambdaGr 95 locaust interp - locaustr 99 q_interp 100 50 initial loglambdaF_interp loglambdaFy 102 initial loglambdaG_interp loglambdaG 505 initial logaux_interp logaux7; 104 initial g interp of 106 yes policy nel xC sta threat R o mbfroat mul onega rest[3]) 107 inbound to:T 105 inbred x5 109 inbrund sta 110 inbrand kFnurt 0 Ebarr 111 inbound R 0 1.5 adaptive(1.5)7 p hereofoi clt 0 10 adaptive(1.5)? 115 inbrand rottext. 0 10 adaptive(1,5)? 114 inbound mul 0 1/ 115 inbused onega, next 0 1/ 117 yar any of loglandday loglanddaG logausy bypent T by; 118 var_output sF xG Y q B ats mul kFreat omega_ment bFr 120 model: 121 xc - 824r-877 * market clearing for capital state 122 T - A+(a+c)+KT + alower+A+KG'alpha/ % approprie output 124 bF - g-omoga-Khar - g-kFr 125 [loglanbdaf_next', loglanbdaG_next', logausf_next', q_next']-GDSGE_NTREP_NIC (MPnext, one of_next')) 127 lanbdaF_next' = exp(loglambdaF_next'); 128 lambdaC next/ - exp/loclambdaC next/ii 129 aux nost' - oxnilonausF nost'iz 130 REPORT - Spar-Himekty & market clearing for capital policy 131 other - CONCEMENT (ment' 12 132 DEDEKL - DEFDEKL - theLa-ghar+ATmenty & Transformation 13 bGreat - - bFrexts & market clearing 135 av - may + calaky; & consumption of farmer 136 lambdaF = aF* (-signal/(1-ota)) 137 lambdaC = sC (-sigma); 138 auxF = (q+L+(a+c)-c+L+ata)+lambdaFr 141 logaust = log(aust)) 143 mpk nextplung'- (alower-M')+alpha+kDost'(alpha-1)+g mext') MS for_bond1 = 1 - R+ (betal-GDHGE IXPECT(lambdad_next')) / lambdade 56 foc_k6 = q = beta5-CENCE_EXPECT(lended_mext'-spk_nextplusp')/landeds7 147 foc_beedF = 1 = B-cbetaF-CENCE_EXPECT(landedsF_mext')) / landedF = mult 148 for_kV = q - betaV+CD9CB_EXPECT(ass_next*) /lambdaV - theta+qbar+mu#/Rc

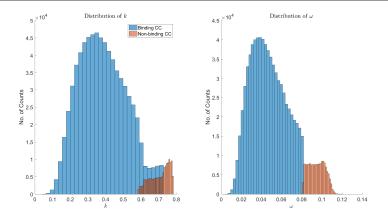
```
149 slack by - mul-subfrastr
150 mlack av - eta-mavra
151 budgetf - q+kFmaxt +bFmaxt/R + xF - A+(a+c)+kF - omega+q+Kbarr
    MC_Y = Y - xG - xFr
    condis onega next' = (g next'+kTnext + bTnext) - g next'+onega next'+Kbar/
158 foc_kGr
159 for bondy;
160 For kTr
161 plack bfr
162 slack sFr
161 budgetFr
164 MC Tr
165 consis_omega_next/r
    end
169 simulate:
170 num carinda - 1000c
171 num samples - 100/
172 initial kF 0.05c
174 initial shock 7/
176 var sime xF xC Y g R ots mif bF:
177 kP -kFmatr
178 omega' - omega next's
179 end:
```


Notice we set {ω_{t+1} (z_{t+1})} as unknown, and derive ω̃_{t+1} (z_{t+1}) = q_{t+1}(z_{t+1})k_{t+1}+b_{t+1}/(q_{t+1})K ∀z_{t+1}. Consistency equation requires ω_{t+1} (z_{t+1}) = ω̃_{t+1} (z_{t+1}) ∀z_{t+1}.
We can derive current debt level by b_t = q_t (ω_tK - k_t)


Par	rameters	xogenous States	Endogenous States	Policy Functions	Unknowns	Models & Equations	Simulations				
18 30 95 106 120 121	<pre>var state kF omega; var_shock A; var_interp loglambdaF_interp loglambdaG_interp logauxF_interp q_interp; var_policy nxF xG eta kFnext R q nbFnext muF omega_next[3]; model;</pre>										
121											
123	1 – A*	1 - A*(arc)*kr + alowel*A*KG alpha, % agglegate output									
124 125	bF = q*omega*Kbar - q*kF;										
126	[loglambdaF_next', loglambdaG_next', logauxF_next', q_next']=GDSGE_INTERP_VEC' (kFnext, omega_next');										
127	<pre>lambdaF_next' = exp(loglambdaF_next');</pre>										
128	<pre>lambdaG_next' = exp(loglambdaG_next');</pre>										
129	<pre>auxF_next' = exp(logauxF_next');</pre>										
130	kGnext = Kbar-kFnext; % market clearing for capital policy										
131	<pre>gbar = GDSGE_MIN(q_next');</pre>										
132	bFnext = nbFnext - theta*gbar*kFnext; % Transformaion										
154	<pre>consis_omega_next' = (q_next'*kFnext + bFnext) - q_next'*omega_next'*Kbar;</pre>										
156	equations;										
165	consis_omega_	consis_omega_next';									
166	end;	end;									
167	end;										

- Trick 1: Use log of $\{\lambda_{t+1}, \lambda'_{t+1}, \xi_{t+1}\}$ for interpolation to reduce nonlinearity.
- GDSGE_INTERP_VEC evaluates future variables in var_interp once for all.
- As mentioned, GDSGE can accommodate more general dependence on future policy than expectation.

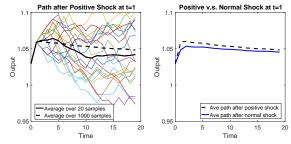
Pa	rameters	genous tates	Endogenous States	Policy Functions	Unknowns	Models & Equations	Simulations			
106 107 108 109 110 111 112 113 114 115	var_policy nxF xG inbound nxF inbound eta inbound kFnext inbound R inbound q inbound nbFnext inbound mwF inbound mwF	0 2; 0 2; 0 1; 0 Kbar; 0 1.5 a 0 10 a 0 10 a 0 1;	<pre>R q nbFnext muF o daptive(1.5); daptive(1.5); daptive(1.5);</pre>	mega_next[3];						
120 131 132 133 134 135	<pre>model; qbar = GDSGE_MIN(q_next'); bFnext = nbFnext - theta-qbar*kFnext; % Transformaion bGnext = -bFnext; % market clearing xF = nxF + c+A+kF; % consumption of farmer</pre>									
149 150 156 161 162	<pre>slack_bF = muF+nbFnext; slack_xF = eta+nxF; equations; slack_bF; slack_xF;</pre>									
163 164 165 166 167	<pre>budgetF; MC_Y; consis_omega_next' end; end;</pre>	,								


- Trick 2: Transform collateral and consumption constraints into $nb_{t+1} = b_{t+1} + \theta \underline{q}_{t+1} k_{t+1} \ge 0$, and $nx_t = x_t + cA_t k_t \ge 0$, and include nb_{t+1} and nx_t as unknowns, as in Bianchi2011 and equation (2).
- Also initialize by solving the corresponding last-period problem (model_init)

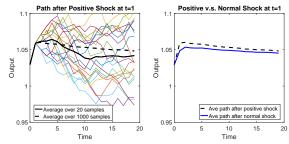
Inspecting the Policy Functions

 highly nonlinear results across regions: the collateral constraint binds with low k_t and low ω_t; the consumption constraint binds with high k_t and low ω_t.

Inspecting the Ergodic Distribution

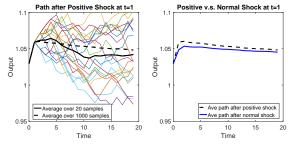


- The ergodic distributions of k and ω confirm our choice of state space.
- The collateral constraint binds with prob. 0.83; and consumption constraint binds with prob. 0.82.

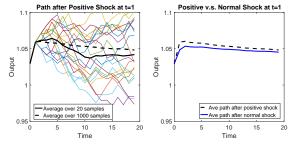

• How to generate IRF with recurrent shock and without steady state?

- How to generate IRF with recurrent shock and without steady state?
- Assume $A_t \in \{\underline{A} < A^* < \overline{A}\}$. Pick an initial position (k_0, ω_0, A_0) .

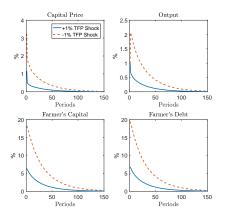
- How to generate IRF with recurrent shock and without steady state?
- Assume $A_t \in \{\underline{A} < A^* < \overline{A}\}$. Pick an initial position (k_0, ω_0, A_0) .
- Step 1: set $A_1 = \overline{A}$ at t = 1, simulate forward and compute the average (left figure):



- How to generate IRF with recurrent shock and without steady state?
- Assume $A_t \in \{\underline{A} < A^* < \overline{A}\}$. Pick an initial position (k_0, ω_0, A_0) .
- Step 1: set $A_1 = \overline{A}$ at t = 1, simulate forward and compute the average (left figure):


• Step 2: set $A_1 = A^*$ at t = 1, and compute the average of the simulation (right figure).

- How to generate IRF with recurrent shock and without steady state?
- Assume $A_t \in \{\underline{A} < A^* < \overline{A}\}$. Pick an initial position (k_0, ω_0, A_0) .
- Step 1: set $A_1 = \overline{A}$ at t = 1, simulate forward and compute the average (left figure):



- Step 2: set $A_1 = A^*$ at t = 1, and compute the average of the simulation (right figure).
- Step 3: Take their difference starting from t = 1 as conditional IRF.

- How to generate IRF with recurrent shock and without steady state?
- Assume $A_t \in \{\underline{A} < A^* < \overline{A}\}$. Pick an initial position (k_0, ω_0, A_0) .
- Step 1: set $A_1 = \overline{A}$ at t = 1, simulate forward and compute the average (left figure):

- Step 2: set $A_1 = A^*$ at t = 1, and compute the average of the simulation (right figure).
- Step 3: Take their difference starting from t = 1 as conditional IRF.
- Step 4: Average the conditional IRF over the ergodic distribution for unconditional IRF.

• The IRFs are asymmetric and persistent, although the TFP shocks are symmetric and temporary, thanks to collateral constraint and market incompleteness.

General Framework: State with Implicit Law of Motion

$$oldsymbol{F}\left(s,x,z,\left\{s'(z'),\mathcal{P}^{(n)}\left(z',s'(z')\right)
ight\}_{z'\in\mathcal{Z}}
ight)=0.$$

- Question: How to evaluate the transition to future endogenous states s'(z')?
- Some admit explicit transition, as in the RBC and Bianchi example
 - s' is an explicit function of var_shock, var_state and var_policy
 - Consistency equation is trivial here since s' does not depend on z'

General Framework: State with Implicit Law of Motion

$$\boldsymbol{F}\left(\boldsymbol{s},\boldsymbol{x},\boldsymbol{z},\left\{\boldsymbol{s}'(\boldsymbol{z}'),\mathcal{P}^{(n)}\left(\boldsymbol{z}',\boldsymbol{s}'(\boldsymbol{z}')\right)\right\}_{\boldsymbol{z}'\in\mathcal{Z}}\right)=0.$$

• Question: How to evaluate the transition to future endogenous states s'(z')?

- Some admit explicit transition, as in the RBC and Bianchi example
 - s' is an explicit function of var_shock, var_state and var_policy
 - Consistency equation is trivial here since ${\it s'}$ does not depend on ${\it z'}$
- It becomes involved with endogneous state (e.g., ω_t here)
 - the transition of some endogenous states $\overline{\overline{s}}$ satisfies

$$0 = \overline{\overline{g}}(s, x, z, \overline{\overline{s}}'(z'), x'(z'), z'),$$

for some non-trivial function $\bar{\bar{g}}$.

General Framework: State with Implicit Law of Motion

$$\boldsymbol{F}\left(\boldsymbol{s},\boldsymbol{x},\boldsymbol{z},\left\{\boldsymbol{s}'(\boldsymbol{z}'),\mathcal{P}^{(n)}\left(\boldsymbol{z}',\boldsymbol{s}'(\boldsymbol{z}')\right)\right\}_{\boldsymbol{z}'\in\mathcal{Z}}\right)=0.$$

- Question: How to evaluate the transition to future endogenous states s'(z')?
- Some admit explicit transition, as in the RBC and Bianchi example
 - s' is an explicit function of var_shock, var_state and var_policy
 - Consistency equation is trivial here since \mathbf{s}' does not depend on \mathbf{z}'
- It becomes involved with endogneous state (e.g., ω_t here)
 - the transition of some endogenous states \overline{s} satisfies

$$0 = \overline{\overline{g}}\left(s, x, z, \overline{\overline{s}}'(z'), x'(z'), z'\right),$$

for some non-trivial function $\overline{\overline{g}}$.

- **Our solution**: include $\bar{s}'(z'), \forall z'$ as unknowns and \bar{g} in the equation system
- Kubler and Schmedders(03), and Elenev et al.(16) handle this differently. See an example of the method in Elenev et al.(16) here.
- Consistency equation: the key innovation of the algorithm that enables design of the toolbox

Advice on Using GDSGE and Conclusion

- GDSGE offers great flexibility. Check other examples on our website.
 - 1. RBC with Irreversible Investment: how to introduce a continous exogenous shock process (e.g. AR(1))
 - 2. Heaton and Lucas (1996):
 - (i) Evaluate the accuracy of solutions
 - (ii) Using consumption share (instead of wealth share) as endogenous state
 - 3. Guvenen (2009): use one solved equilibrium as initial guess for another one
 - 4. Bianchi (2011): use adaptive sparse grid method
 - Barro et al. (2017): deal with model with extremly high curvature (risk aversion coefficient=100)
 - 6. Cao and Nie (2017): different system of equations at different collocation points
 - 7. Cao (2018): beliefs heterogeneity
 - Heterogenous-agent model: Huggett(97) with transitional dynamics, and Krusell and Smith(98) with aggregate shocks

Some Advice on Using GDSGE

- 1. Start by modifying the existing examples first. For example:
 - 1.1 two-agent models: KM (1997), Heaton and Lucas (1996), Cao and Nie (2017), Cao (2018)
 - 1.2 open economy models: Bianchi (2011), Mendoza (2010)
 - 1.3 portfolio choice and asset pricing: Heaton and Lucas (1996), Guvenen (2009)
 - 1.4 rare disasters: Barro et.al (2017)
 - 1.5 Heterogenous-agent models: Huggett (1997), Krusell and Smith (1998)
 - 1.6 bubble in backward iteration: Brumm et al (2015)

- 1. Start by modifying the existing examples first. For example:
 - 1.1 two-agent models: KM (1997), Heaton and Lucas (1996), Cao and Nie (2017), Cao (2018)
 - 1.2 open economy models: Bianchi (2011), Mendoza (2010)
 - 1.3 portfolio choice and asset pricing: Heaton and Lucas (1996), Guvenen (2009)
 - 1.4 rare disasters: Barro et.al (2017)
 - 1.5 Heterogenous-agent models: Huggett (1997), Krusell and Smith (1998)
 - 1.6 bubble in backward iteration: Brumm et al (2015)
- Crucial to initialize the var_interp properly for the algorithm to work. Initializing with a last-period problem in finite-horizon economies usually works robustly.

- 1. Start by modifying the existing examples first. For example:
 - 1.1 two-agent models: KM (1997), Heaton and Lucas (1996), Cao and Nie (2017), Cao (2018)
 - 1.2 open economy models: Bianchi (2011), Mendoza (2010)
 - 1.3 portfolio choice and asset pricing: Heaton and Lucas (1996), Guvenen (2009)
 - 1.4 rare disasters: Barro et.al (2017)
 - 1.5 Heterogenous-agent models: Huggett (1997), Krusell and Smith (1998)
 - 1.6 bubble in backward iteration: Brumm et al (2015)
- Crucial to initialize the var_interp properly for the algorithm to work. Initializing with a last-period problem in finite-horizon economies usually works robustly.
- 3. input unit-free Euler equations: $\beta \mathbb{E}_t \left(R_t c_{t+1}^{-\sigma} / c_t^{-\sigma} \right) 1 = 0$, instead of $c_t^{-\sigma} \beta \mathbb{E}_t \left(R_t c_{t+1}^{-\sigma} \right) = 0$. Also normalize Lagrangian multipliers to bound their values.

- 1. Start by modifying the existing examples first. For example:
 - 1.1 two-agent models: KM (1997), Heaton and Lucas (1996), Cao and Nie (2017), Cao (2018)
 - 1.2 open economy models: Bianchi (2011), Mendoza (2010)
 - 1.3 portfolio choice and asset pricing: Heaton and Lucas (1996), Guvenen (2009)
 - 1.4 rare disasters: Barro et.al (2017)
 - 1.5 Heterogenous-agent models: Huggett (1997), Krusell and Smith (1998)
 - 1.6 bubble in backward iteration: Brumm et al (2015)
- Crucial to initialize the var_interp properly for the algorithm to work. Initializing with a last-period problem in finite-horizon economies usually works robustly.
- 3. input unit-free Euler equations: $\beta \mathbb{E}_t \left(R_t c_{t+1}^{-\sigma} / c_t^{-\sigma} \right) 1 = 0$, instead of $c_t^{-\sigma} \beta \mathbb{E}_t \left(R_t c_{t+1}^{-\sigma} \right) = 0$. Also normalize Lagrangian multipliers to bound their values.
- 4. debug: use mex_modname function in iter_modname.m to debug.

- The compiled mex file contains the libraries for the actual calculations
- The mex file is called by by the iter_ and simulate_ file, e.g. in RBC:

[GDSGE_SOL,GDSGE_F,GDSGE_AUX,GDSGE_EQVAL,GDSGE_OPT_INFO] = ... mex_modname(GDSGE_SOL,GDSGE_LB,GDSGE_UB,GDSGE_UBATA,... GDSGE_SKIP,GDSGE_F,GDSGE_AUX,GDSGE_EQVAL);

- Input: vectors with information for all problems across collocation points
 - GDSGE_SOL: the (vector of) initial points of var_policy for solving equations
 - GDSGE_LB / GDSGE_UB: lower and upper bounds of var_policy to search
 - GDSGE_DATA: parameters and states that characterize problems at each collocation point

[GDSGE_SOL,GDSGE_F,GDSGE_AUX,GDSGE_EQVAL,GDSGE_OPT_INFO] = ... mex_modname(GDSGE_SOL,GDSGE_LB,GDSGE_UB,GDSGE_DATA,... GDSGE_SKIP,GDSGE_F,GDSGE_AUX,GDSGE_EQVAL);

- Output: vectors of output from equation solving across collocation points
 - GDSGE_SOL: var_policy returned
 - GDSGE_F: max absolute residual
 - GDSGE_AUX: var_aux evaluated at returned var_policy
 - GDSGE_EQVAL: residual of each equation at returned var_policy
 - GDSGE_OPT_INFO: information returned from equation solving procedures

- A framework and toolbox that solves GDSGE with global methods robustly and efficiently.
- Any models with short-run equilibrium conditions represented by equations fit in the framework, covering classical and state-of-art models in macro, IF, macro finance and asset pricing
- Key innovation: consistency equations to deal with endogenous states with implicit laws of motion
- Can solve models with discrete choice (e.g., sovereign default) by smoothing out discrete choices
- Comments and contributions welcome! gdsge.cln2020@gmail.com